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INTRODUCTION

KOSt organisms, vertebrate and invertebrate, can convert glucose

to a more readily utilizable form of energy. Lactate dehydrogenase

(LDH) is one of the glycolytic enzymes that facilita~e this process.

Specifica.lly, LDH catalyses the reversible reaction

pyruvate + NADH~ lactate + t:AD+

which is the determinant step in the production of la.ctate by anaerobic
1

glycolysis. The ~Go , the standard free energy change at pH 7.0 and

oOe, for this reaction is -6 Kcal/mole, meaning that the overall

equilibrium for this reaction is far to the right. The final concen-

trations of lactate and pyruvate however will be det8~ined by the

intracellular environment of the cells i:l t.he tissue under considera-

tion. If a grouI:J of cells in a tissue experiences a decrease in oxygen

tension, or a decrease in pH, or an increase in pyruvate concentration,

or a combinatio:l of these events, the above reaction will produce more

lactate. If the same group of cells experienci~s an increase in oxygen

tension, or an increase in pH, or a decrease in pyruvate concent:::'ation,

or a combination of these events, the~ the reaction will favor pro-

duction of more p~Tuvate.

LDH is found in. ::lost organis;::.s in a vari8ty of tissues, such as

the heart, liver, limbs, nervous system, eye lens, and ffiany ot~ers

(Kaplan, et al, 1960, Kaplan & Ciotti, 1962, Kaplan, et al, 1963,

Fonner, et al, 1969, Horowitz &Whitt, 1972). In all organisms studied



I

2

to date the enzyme is either a dL~er or a tetramer of subunits, whose

~olecular weights are about 35,000. Throughout the first 25 years of

study on LDH, it was assumed that the enzyme always consisted of four

subunits, but recently several organisms have been shovm to possess an

active enzyme consisting of only two subunits (Long &Kaplan, 1968).

In either case, tetramer or diner, the sub1.L."1its are of two types,

designated A and B, or Hand M. The latter nomenclature cam8 into use

whe~ it was found that one homotetramer (Hu) 0c~ured ~ainly in heart

tissue, and the other homotetramer (Ku) occured mainly in peripheral

muscle (Kapldn, 196u). These two tj~es of iDE, Hu and xu' are chemi-

cally and electrophoretically distinguishable, as are the three ~oss-

ible heterotetramers H
3

M, H
2

Wo2, and K~3 (Wilson, et aI, 1963, fondy &

Kaplan, 1965). Often individual cells of a tis:me produce both sub-

units, resultine in five possible combinations, or isozymes of LDH in

the celIs of that tissue. The number and type of isozyr.:.es present in

a tissue is largely dependent on the type of environment surrounding

the tissue. If the normal flow of energy in a tissue is through aerobic

metabolism, as it is in the heart of most orf,anisms, then the isozyme(s)

present ar8 thc<:;e "','ii th mostly H subunits (ELt a.nd H
3
1.i). Vihereas, if

the normal flow of energy in a tissue is through an<1.erobic metabolisn,

then the predominant isozyme(s) present are those with Mostly M sub-

units (lliuand 1'!3H)

Kaplan, 1965).

(~ilson, et aI, 1963, Dawson, et aI, 1)6u, Fondy &-- -- .

Although the presence of five isozymes is the common finding in

the various organisms studied (Markert &M¢ller, 1959), only one form
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has been found in many flatfishes (Kaplan, 1964), while as many as lu

forms have been found in the brook trout, Salvelinus fontinalis

(Hochachka, 1966). In order for a tissue to ~ossess mOl~ than five

isozymes, there must be multiple forms of one or both of the basi~

subunits.

Early studies on LDH showed that the en~yme s~ecifically catalysed

only the oxidation of L-lactate. Recently it was demonstrated that

several invertebrates in different phyla possess a D-l~ctate specific

enzyme (Long &Kaplan, 1968, Selander &Yang, 1970, Gleason, et aI,

1971, Long &Kaplan, 1973). Although there is still some controversy

over the molecular weight of LDH found in Li~ulus polyphemus, the

generalization seems to be that all nollusks, polychaete a~nelids, and

che1icerate arthropods stl~ied to date possess a D-lactate s~ecific

enzyme which is a dimer (m.w. 70,000) and that most of the other groups

possess an L-lactate specific enzyme which is a tetramer (m.w. 140-

1$0,000). Exceptions to this "rule" are 1) the tetrameric D specific

1
LDHs of all barnacles studied to date , 2) the sea urchin llrbacia lixula,

which possess an enzyme that can oxidize both isomers of lactate at

equal rates (Harm::.en & Lum, 1972), and 3) the two didinct forn,s of LDH

in Lactoba~~11us plantarlt~, one that is D-lact~te specific and one

that is L-lactate specific (Dennis & Kaplan, 1960).

The catalytic properties of LDS have bee~ stud1ed cainly in verte-

brate organisms; not many invertebrate LDHs have been stuHied in detail.

A summary of the properties of Vertebrate and some invertebrate LDHs

1
Chthamalus deEressus, however has an L-lactate specific LDH (Ha~~en

1969) •



are given in Table 1. Basically, properties such as the optimal pyruvate

concentration, the M:ichaelis-rLenten constant (Ki.!)' and the concentra-..,
tion of pyruvate causing significant inhibition are distinctive for

closely related organisms. These properties are a function of the sub-

unit composition of the active enzyme. One of the distinguishing

differences among the homotetramers found in the vertebrates is their

relative tolerances of high concentrations of pyruvate. In Table 1

it can be seen that the H4 isozyme operates optimally at much lower

concentrations of p~Tuvate than does the b4 isozyme. The same rela­

tionshio is found when lactate is the substrate.

The effect of temperature on the catalytic oroperties of LDH has

been studied mainly i~ fish. At alkaline pH values, above about 7.5,

in thermal motion of the reactants. It has also been noted that the

ant than the effect of other thermodynamic factors 0:1 the reaction

At lew pyruvate concentrations, i.e. those close to physiological con-

At lower oH values the K has a minimuT. near. ~

of substr?-te below the K~., for that substrate; then an increase in

enzyme-substrate affinity compensates at least partially for the decrease

velocity (Hochachka &. Somero, 1968, De Eurgos, et aI, 1173). f.t thes8

ditions, it appears that the enzyme-substrate affinity is more import-

the lower end of the organism's thermal ranee and increases at tempera-

tures outsid8 of this range (Hochachka &: So.nr.!'o, 1968, Sonero, 1973).

low pyruvate concentrations, the enzyme is operating at a co~centration

the KM for pyruvate is essentially independent of temperature within

the normal habitat range of the organism (Hochachka & Lewis, 1971,

the KF for pyruvate increases with temperature, but at lover pH values

De Burgos, et aI, 1973).



pH of body fluid of poikilotherms varies inversely with temperature

(Rahn, 1965). A decrease in temperature brirgs about an increase in

pH, which by itself, would cause an incrt~ase in KF (Hochachka &. Lewis,

1971). But the same decrease in temperature causes a temperature-

dependent decrease in K , so these two effects would tend to offset
~~

each other. Hence the reaction rate wClud remain constant, as long as

the temperature was within the normal environmental range for that

organism (Somero, 1969). These effects have been shovmto occur in

long term acclimation in the rainbow trout, Salmo gairdnerii, ann the

brook trout, SalvAlinus fontinalis (Somero?! Hochachka, 1)67, Hochach.1<:a

& Lewis, 1971).

A different mechanism has been postulated for the short ter~

compensation in the Alaskan king crab, Paralithodes camtschatica.

I t has two kinetically active isozyrnes: one with a high Ki~' for pyruvate

in the 100
_ lSoC ranee and one with a low K,_ for pyruvate in the same

:'!..

temperature range. At normal habitat temperatures, 0°_ SoC, both LDHs

water of bays and estuaries and in the open ocean to a depth of 100

meters from Unalaska to Magdalena Bay, Baja California. This crab has

1969) •

o 0
But at 10 - lS C,

been reported to prefer sand and mud bottoms (Schmitt, 1921). In early

The Dungeness crab, Cancer @agister Dana, is found in the shallow

the Ithigh Kr/l LDH is no longe r active, since i ts K~,r is two orders of

magnitude greater than the pyruvate concentraticn in the cell. There-

fore,the "1ow K~!;11 LDH is active at all temneratures, while the "high Kr.~"

LDH is active only at normal habitat te:np2rcltures (Somerc &Hochachka,

are active at phys:tological pyruvate concentraticns.
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s~~er lar~e numbers of juvenile crabs have been found completely

buried in the sand, leaving only their eyes and antennae exposed

(McKay, 19h2). A small cavity is left in frent of the 'crab for water

circulation. The sides of the carapace and the legs are covered with

fine hairs, which filter out fine sand particle:> in the inhalent stream.

Juvenile crabs will also burrO'.'l in the sanri when disturbed. At low

tide mature C. ~agi3ter have been personally fOlmd stranded on mud

flats, exposed to the ambient air temperature. The average habitat

temperature for Q. ma~ister in Coos Bay is lOoC, with a range of

o 0 ( )5 - 20 C over the period of a year Oregon Fish Commission records •

Since this animal is a large and abundant ectotherm, experiencing a

wide temperature changa in its natural envircnment, it might prove to

be an interesting organism to investigate some structural and kinetic

properties of LOR.

The following questions were askad in this thesis: 1) What are

some of the structural properties of the LCH of C. ;~adster ,a) what

is the molecular weight of the catalyti~al]y active form, b) what is

the molecular weight of the smal1est subu.'1it-- is the enzyme a dimer

or a tetramer, c) what is the isozyme conposition of heart and peripheral

muscle tissues; 2) What are some of the kjnetic properties of the LDH

enzyme, a) what stereospecificity for lactate dces this enzyme pOS0ess,

b) how do the anparent KE v~lues for pyruvato for the enzyme isolated

from heart and peripheral muscle compare, cJ do the LDHs isolated from

these tissues incur substra.te inhibition at high pyruvate concFmtra-

tions, d) does the enzyme from these tissues follow l.'lichaelis-l';enten

kinetics; 3) How does temperature affect the a~rarent Kr.; for nvruvate
11. ... '"
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of the LOHs from heart, leg, and claw tissues? The physical, chemical,

and kinetic properties of Cancer magister LDH are compared with the

corresponding properties of LDHs from crustaceans and other organisms.
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MATERIALS MID METHODS

Male Cancer magister Dana were caught in Coos Bay and kept in sea

water tanks Q~til used. The holding tank water temperature was not

monitored throughout the tem~erature expp.riments; however, since the

experiments were performed during winter months (November through

January), the holding tank temperature range can be estL~ated. The

temperatures recorded in the lower Coos Bay by the Oregon Fish Conmis-

sion for the period !~ovember 1, 1973 to January 31, lnh ranged between

7.6°C and 11.6°C, with an average of about 10.3 0 G. The te~perature of

the holding tank water was measured at b.30C after a cold spell in early

January, while the water temperature in the bay was measured at 6°C

°(surface) and 8.5 C (bottom) (personal measure~ents). The holding tank

tem~erature during the temperatura experiments, then, could have ranged

from bOC as a nini~um to 120 or 13°C as a maxiillu~. Fluctuations from

day to day were not rtetermined.

Individual legs and claws were removed through autotomy; the

muscle was excised and placed in a mortar resting in an ice bucket.

Sand was added to the mortar along with a volu-ne of hu:'fer (b mls)

equal to twice the weight of th'-l musc18. The buffer used ..;as 0.1 1:

'JaP01.J. ' pH 7.4, an d 0.1 M in NaC1- Hearts we re removed from Iiva crabs

and homogenized immediately in the same manner as the leg and claw

tissues. The homogenate was then SPQ~ in a Sorval1 RC2-B refrigerated

centrifuge at 15,000 g for 10- 15 minutes. The supernatant was used
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directly as a crud~ preparation of LDH.

The enzyme was partially purified by bringing the sunernatant

slowly to 35% saturation with aTlJI!lonium sulfate and then slmvly to

65% saturation with ammonium sulfate. The s~nple was ceDtrifuged at

l5,00~ g for 15 minutes after each addition. After centrifugation of

the 65% saturated solution, all of the enzyme activity was contained

in the precipitate, which was redissolved in a minimu~ anount of

0.1 M NaPOh, pH 7.4, and 0.1 M i~ NaCl. The enzyme solution obtained

in this maDner will be referred to as the purified preparation.

Enzymatic activity was determinen by following the oxidation of

fJ -Diphosphopyridine nucleotide (NADH) at 340 nm on a .t'erkin-Elmer DB

recording spectronhotorneter. The reaction :nixture contained 0.1 ml of

2.56 mr!l NADH, 0.1 ml of an LDH sample, 0.1 ml of pyruvate of varying

concentrations, and 1. 7 mls of 0.1 M NaPOh ' pH 7.h, and 0.1 1~ in NaCl.

All reaction components were kept on i~e before being used.

The temperature study of the pyruvate to lactate reaction was

accomplished by using a Haake temperature regulation unit and a thermal

cell holder to control the temperature of the reaction mixture. The

reaction mixture was the same as that described above. First 1. 7 rds

of 0.1 M NaPO, buffer was allowed to equilibrate to the chosi~n assay
1..1.

temperature. The NADH ann LDH aliquots were then added. The reactants

were mixed, the cuvette was placed in the thermal cell holder, and

the recorder was activated to indicate the presence of other dehydrog-

enases. Finding no oxidation of NADH, the reaction was started by the

addition of 0.1 ml of pyruvate, varying in final concentration from

10-5 M to 10-2 M.. The initial velocities \I.-ere obtained by drawing a
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straight line tangent to the beginning of the recordin~ for that assay.

Five separat~ ex~eriwAnts were performed on both crude and puri-

'0 0 0fied preparations of leg, claw, and heart tissues at 10 , 15 , and 20 C.

All experiments conducted at a given temperature for either the crude

or the purified form of the enzyme of all tissues were done ·on different

preparations, e.g. once a given enzyme solution was used at a given

temperature, it was not used again to do the same rQn in the same state

of purity. The Y.ichaelis-~.lenten constant, K,., and the maximum velocityw

were obtained from Eadie-Hofstee plots of the data.

The stereospecificity of the enzyme was determined by monitoring

the reaction converting lactate to pyruvate. The reaction mixture

contained 1. 7 mls of 0.1 !vi NaPO) , pH 7.4, and 0.1 il: in HaCl, 0.1 ml of
1 -

the enzyme preparation (crude or purified), and one of the tU0 following

pairs of reactants: 1) 0.1 w.l of 8 x 10-
1

M lactate CD, L, or DL isomer)

plus 0.1 ml of 8 x 10-
2 MNAD~ or 2) 0.1 01 of h x 10-1 Mlactate

( ) } -2 +D, L, or DL isomer plus 0.1 ml of ~ x 10 ~ NAD. These assays were

carried out at room temperature (20°C). The lactate isomer ',VRS added

last to start the reaction.

The pH dependency of the pyruvate to lactate reaction was studied

by homogenizing five legs from the same crab in 0.1 M Tris-HCl, pH 7.6,

and 0.1 M in NaC1. Before removif1C the 18r:;s, the hemolymrh was col-

lected from the live crab. The pH was measured at 100C (holding tank

t t o.~oC).empera ure was 7 :J After spinning the remove cell debris, the

supernatant was used as a source of the enzyme. 4.5 ml aliquots of

the enzyrrte were titrated to the following pH values: 6.0, 6.5, 7.0,

7.6, 8.0, 8.6, 9.0. The vol~~es were then adjusted to 10.0 mls with
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distilled water; the pH values were checked again and adjusted where

necessary. The titrations were done one at a time so that Adch

enzyme solution Gould stand for 10 minutes on ice at the adjusted pH

before the assays were performed. Three reactions were run at each of

the above pH values, using 0.5, 2.5, and 5.0 mM pyruvate. The pyruvate

and NADH solutions were made in 0.1 M Tris-HCl at the above pH values.

classification analysis of variance, as described by Sokol and Rohlf

assays for the inhibition study were performed as described above,

except that va~Jing amounts of pyruvate were used, while keeping the

h
bJ ~ ~ ( 2 10-),.ue \lex~~~n . m.w. ca. x_through separately or two at a time:

Beef heart LDH was obtained from Siema Chemjeal Company. The

The statistical analysis of the effect of temperature on ~he

The molecular wei[;'lt of the native LDH molecule ,.-as obtained using

a 1.8 x SO em column of Sephadex G-200 (Fine) equili.brated with 0.1 ~~

aDparent K~!l for p~rruvate was dor.e by ap::>lyiT'e' an F-test to a single

assay volume constant at 2.0 mls. All assays with the beef heart LDH

were performed at room temperature (22°C).

NaP04, pH 7.4, and 0.1 I;~ in NaCl. The follow:iTl~ calibrants were passed

The pH below 7.0 was closely monitored. All assays were carried out

at 10°C using the same reactant vol~es as described above.

The reactions were carried out in the respective 0.1 E Tris-HCI buffer.

catalase (m.w. 195,000 (Andrews, 1965», rabbit muscle aldolase

(:n.w. 160,0(0), beef heart LDH (m.w. 131,000), bovine fOeru."1J. albumin

(m.w. 68,000), catalase subunit (m.,·;. 60,000), 0( -chyrnotFjpsinogen

(m.w. 25,700), and sperm whale myoglobin (m.w. 17,800)~ 3.2 ml

(1969) •
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fractions were collected in the cold for both the calibrants and the

LDH samples. The LDH peak was located by monitoring the oxidation of

NADH at 340 nm as rlescribed above.

To cbtain the molecular weight of the LDH sUbQ~it, heart and leg

samples were first purified as follows: The 65% ammo~ium sulfate

saturated enzyme (the Il purifiecl" preparation) was dialysed in I liter

of 0.01 }.i Tris-HC1, pH 7.6, with two changes. The sample was then

applied to a 1.8 x 50 em column of Sephadex G-200 equilibrated with

the same Tris-!-ICl buffer. 3.I.t ral fractions were collected and the

enzyme peaks were located using the assay method described above.

The peak samples were pooled and applied to a 1.8 x 10 em ccll1rnn of

DEAE-Cellulose in the san;e Tris-BCl buffer used earlier. 3.4 ml

fractions were collected, using 165 mls of 0.01 >',1 Tris-HCl buffer

as the eluent. At this point no LDH activity was detected in the

fractions. A gradient was the>') started .vith 100 mls of 0.1 M IlaCl in

0.01 M Tris-HC1, pH 7.6, in one reservoir and 100 T.ls of 0.01 I.l Tris-

HCl, pH 7.6, in the other reservoir.

The elution peak frolll the DEAE-Cellll1ose column was pooled. After

lypholysine the sample the c~stals were dissolved in distilled water

and dialysed exhaustively against 500 mls of distilled water. The

samp18 was lypholysed a?,ainj the resulting 2mc of material was used

as a source of the LDH subunit.

The subunit molecular weight of ~. magister LDH was deten~ined

by sodium dodecyl sulfate (SDS) electro~horesis as described by ~eber

and Osborn (1969), with the following changes: 1) Instead of incubat,i'1~=

o
the proteins at 37 C for two hours, the LDB samDle and the standards
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were incubated at lOOoC for three minutes and then dialysed for two

hours (Pringle, 1970), and 2) the gels were destained for sevel~l days

without the aid of electrophoresis. The standards used for this deter-

mination were ovalbumin (m.w. h3,000), pepsin (m.v;. 35,00:J), and

sperm whale myoglobin (m.w. 17,800).

Disc gel electrophoresis was perfonr,ed according to Davis (1961~),

without spacer gels. The samples were applied directly to the 7% f.!eL

Human serU!1l was obtained fro"'1 Kaiser Hospital in North Bend, Grego>'}.

Purified heart, leg, and cla"i\'" samples 'Nere 81ectrcphoresed concurre"tly,

in separately tubes. Samp18s fro~ different tissues were not electro-

phoresed together in the same gel. All experiments were perforrr.ed in

the cold.

Starch gel el''lctrophoresis was performed usir::: the procedures of

Fine and Costello (1963). Heart, leg, and claw tissues were homo:::enized

in a pH 7.0 buffer of 32 m;\i Na
2

HPOh and 3 rJ1~: citric a0id. After centri-

fugation, the crude supernatant was used as a source of the enzyme.

Beef heart LDH, mentioned earlier, was diluted 1:100 using the same

phosphate-citrate buffer. Thirteen grams of hydrolyserl starch was

dissolved in 100 mls of a pH 7.0 buffer of 56 ~,: Na
2

HPO and 9 Til:.;
J!

citric acid. Electrophoresis was carried out for 16 to 23 hours in the

cold. Half of the 12'81 was stained for LDH activi ty using the stain

described by Dietz and Lubrano (1967); the other half of t.ht1 gel was

used as a control to locate "nothin~" dehydroGenases, by orJitting

lactate from the staining solution.
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RESiJ1...Tf:

Molecular ~eiGht

The molecular weight of LDH from Q. magister leg and heart tissues

WdS determined using a Sephadex G-200 column. In Fig. 1 the elution

volumes obtained for the standards and the LDH sampl<"s i'fere plotted

versus the log of the respective ~olecular weights. A 65% saturated

sample from lag tissue produced an elution patte~~ as sho\~ in Fig. 2.

The results of two separate eXgeriments indicate that the apparent

molecular weight of lactate dehydrogenase in Cancer magister is 137,000.

The molecular weight of the LDR subunit was determined by SDS

electrophoresis. Fig. 3 depicts the mobilities of the LDH subunit and

several standards plotted as a function of the log of the molecular

weight. The results of two separdte experiments indicate an apparent

subunit molecular weight of 40,000 for C. ma~ister LDH.

DEAE-Cellulose chro~otography

Figure h shm";$ the elution profile for LDB: from~. rr.ap'ister heart

tissue on DEAE-Cellulose. Figure 5 is the el u~,ion profile for LIJH

from Q. magister leg tissue. In both tis:3Ues there is one main isozyme,

with a possible "second" isozyme present in the leg preparation. The

minor peak in the leg LDH elutio~ profile, ho~ever, contains only 5%

of the total activity eluted for that leg sample. The total activity

present in the heart sample LDH elution peak is approximately 13% of
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that present in the main peak for the leg sample. The same wet weight

of leg and heart tissue were used for these exper:Lrnents.

Starch gel electrophoresis

Electrophoresis of crude heart, leg, and claW" samples of LDH from

c. magister at pH 7.0 and pH 8.0 produced only one band. Fig. 6 is a

sketch of an experiment performed at pH 8.0. The isozyme from all

tissues migrated the same distance, hence they appear to be the same

isozyme. To demonstrate the separation ability of this technique,

beef heart LmI was electrophoresed along with a crude leg LLE sample.

Fig. 7 is a sketch of the results of this experiment. It is clear that

this technique can separate different LDH enzJ~es. The £. magister

LDH isozyme mibrated 38% of the distance traversed by the beef heart

LDH.

Disc gel electrophoresis

Purified samples from heart, leg, and claw' tissues produced only

one band in the gels. ~hen hu~an seru~ was electrophoresed at the same

time as purified heart and claw samples from ~. ~iste~', the hu~an

serum LDH separated into four bands, as found by Dietz, et al (1970),

while Q. magister heart and cIa,', tissUt'~ sarr,ples again dis;.la.yed a

single band. No results obtained could suggest if the sin~le bands

found for all C•. magister tissue preparations Viere indeed the same

isozyme.
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pH effect on the reaction rate

Figure 8 depicts the pH dependency of the pyruvatE; to lactate

reaction, assayed at 10°C, for a crude pre~aration of £. ma~ister

leg tissue. The initial velocity was fairly constant over the pH

range 6.0 to 7.6 using O.s to S.O wJ pyruvate as the substrate. The

decrease in activity at pH values abc',',} 8.0 and the absence of activity

at pH 9.0 was observed at each pyruvate concentration used. The pH of

the hemolymph of the crab used fer this experirr,ent was 8.h (measured

Temperature effect on apparent K~{o for pyruvate
".

The results of the relationship between the apparent Kj.,; and temp­

erature are given in Figures 9 and 10. Each point is an average

apparent KI ,1' with the standard error repres':mted by the error bars.
'"

Although most of the plots sUEgest an increase in apparent F". for
i.1

pyruvate with an increase in temperature ow,l' the ranEe studieri., none

of these trends are statistically significant at the P=.OS level.

From this deita it appears that the apparent \'; for pyruvate of

.Q.map;ister LDH is temperature indenendent over the nermal habitat

range. The data frOlr the three purified tissue preparations, when

assayed at 10oC, do show a hie;hly signif:tea:'t ctiff<;rence (p < .005) in

apparent K..~; whereas the crude tissue preparations do not sho;,/, an~r

statistical difference, when assayed at 10oC. The enzyme isolated frc::J.

all tissues studied exhibited hyperbolic I'Lichaelis-!'lenten kinetics.

This applies to both crude and purifiedprsparations.
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Stereospecificity

The activity of the leg and heart tissue preparations with the D-

and L-lactate isomers is sum~arized in Table 2. These 'are the results

of the assays usi!1g the higher concentrations of the reactants, lactate

and NAD+. The assays using the lower concentrations of these reactants

gave the same results. It is apparent that the enz~rme present in the

leg and heart tissues are specific for L-lactate. The slight activity

with the D isomer in the crude preparations could be due to residual

L-lactate in the solution from th~ ruptured cells, since no activity

was found in the purified preparations. The amount of activity fOQ~d

with the L isomer was not always consistent with that found using the

DL mixture. This may be due to the hydroscopic nature of the L-lactate

crystals which made exact weighings difficult.

Substrate inhibition

Inhibition by high ryruvate concent~ations on the re~ction rate

was fcund by examining the data obtained from the temperature dependency

experiments. It was noted that the maxirn.u'TI rate was usually obtained

by the assay usipg 5 x 10-3 M pyruvate. So, the reaction velocity

found usinE 10-2 M pyruvate divided by the reac~ion velocity fOQ~d using

5 x 10-3 M pyruvate gives the percent of the naximum rate obtained using

-2 .10 k pyruvate. Out of a total of 1..17 K:,~ determbaticns, SS~ of t.~ese

experiments showed inhibition. But, of those runs showing some inhibi-

t . th t . h' b . t' . tl 10-2 "lon, e average percen In 1 1 lon, e. E. one mlnus 1e ,,, to

5 x 10-3 M ratio, was only 5.2, 7.8, and 7.3% for the claw, leg, and

heart tisslms respectively. The averages were co~puted for each tissue
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by combining the resQlts of the crude and purified preparations at

the three experimental temperatures.

The purified preparations of all tissues showert a decrease in the

amount of inhibition with an increase in temoerature. Furth~r, the
o

claw and leg p~8parations showed no inhibition at 15 and 20°C, while

the heart samples showed only 3.3% and 2.G~ inhibition at 150 and 200 e

respectively. However, only 37% of the exneriments with the purified

heart preparation showed any inhibition at these temperatures. It can

be stated that there was essentially no inhibition in the purified

1 t 150 and 2000v.samp e a At IOoe the purified leg preparation exhibited

2% inhibition and purified heart preparation exhibited 8% i~hibition.

Actual experiments that display these inhibit5.Qn patterns are shmvn in

Fig. 11 and Fig. 12. Also included in Fig. 11 are results of a series

of assays personally performed using the beef heart isoz~~e. Notice

the percent inhibition incurrec by pyruvate concentrations above 1.0 ~!.

by the beef heart isozJ~e.

In Fig. 12 the same two plots of C. ma~ister LDH from leg and

heart tissues are shown along with plots of heart and ~uEcle isozymes

from Limu.lus f?nlypherrms (Long &. Kaplan, 1968). tlGain,notice th~ inhibi-

tion exhibited by +'he Limulus heart isozyme and the lac~< of inhibition

in the Limulus muscle isoz;yme ani C. magister enzyme. The plots for

the enzymes from ~. magister leg and heart ti~sues a~d for Li:'1u1u:3

muscle tissue are represented by one line 1.'1 both figures, since the

kinetic parameters of the three preparations are al~ost indistineuish-

able from each other.
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DISCUSSION

Lactate dehydrogenase isolated from the heart and leg tissues of

the Dungeness crab, Cancer magister Dana, has an o.I=parent molecular

weight of about 137,000. LDH found in the tail muscle of Homarus

americanus has a molecular weight of 143,000 (Kaloustian, 1969) and

the LDH found in Artemia salina has a molecular weight of 140,000

(Ewing & Clegg, 1972). The active enzyme in Q. ~agicter consists of

four subunits (m.w. ca 40,000), while the subunit molecular weight of

H. americanus and f:... salina LDHs is 35,000. The molecular weight of

other tetrameric LDHs also fall within the range of 130- 150,000 (Kaplan,

1964). The quaternary structure of Q. magister LDH is similar to that

of other LDHs. In contrast, Linulus palynhexus and all other chelicer­

ates sturlied possess a catalytically active for:n of LDH with a molecular

weight of about 70,000 (a dimer) (Gleason, et aI, 1971). LDH from

Nereis virens has been shovm to have a molecular weight of 78,000,

also a dimer (Long &Kaplan, 1973a).

LDH from leg tissue of ~' rr.agister shows a"1 L-l2.ctate stereo­

specificity. This is true for all other crustacean LDEs stwlierl to

date with the excepticn of l~'ost barnacle LDHfi. 3arr:acle LDE has a

molecular weight of 140,000 but is D-lactate specifi~. Chthamalus

depressus is L-lactate specific (Ham,ren, 1969). The tetrameric forms

of LDH found in all other mandibulates are L-lactate specific, whUe

the dimeric forms of LDH found in chelicerates studied to date have a
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D-lactate specificity. It is interesting to note that the diEerjc

form, specific for D-lactate, iJ found only in modern members of the

phylogenetical1y primitive arthropods, the chelicel~a.tes, while the

tetrameric form, specific for L-lactate with one exception, is found

only in Jnu('ern members of the phylogenetically advanced arthropods,

the mandibtuates.

Disc gel electrophoresis resolved only one isoz~ne for heart, leg,

and claw tissues from .Q. magister. Starch gel electrophoresis der:J.cn­

strated the presence of only one identical isozyme in each tissue.

These results indicate the presence of only one form of LDB in

Q. m.agister, when the LDB corr.position is deterr.:.ined under the conditions

employed in this study. The finding of a single isozyme in all tissues

of an organism has been reported by several researchers. Gleason, et al

(1971) fouDd only one isoz~1T'1e in Cancer antennari us, Callianassa affinis,

Emerita analoga, and Orconectes prorinquus by starch gel electrophoresis.

Ewing & Clegg (1972) found only one isozyme in Artemia salina using a

variety of techniques. Also, only one form of LDH has been found in

the tissues of several flatfishes (Kaplan, 196u). The presence of one

form of LDH in ,9.. ma;dster is cO:lsistent with cia ta for other crustacea:"1s,

but is U:lcommon for most organisr:J.s studied to date.

The existence of a possible second isozJ~e in the ler tissue of

C. ma£:;ister is suggested by the elution p~ttern obtained from chrcma­

tography with DEAE-Cellulose. The small peak eluted by the NaCl :rradLmt

appears to be distinct from the major peak eluted by buffer alone (Eee

Fig. 5). But since the major peak did not <i+,j ck to the colu.''l1n. before

elution and the small peak r€pre:'iented only a small fraction of the
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total activity eluted from the coluum, the presence of a second isozyme

beef heart LDH.

quantity to produce a second band in the gel experiments.

consistent with the finding of only one form of LDH in C. ~arister.

The apparent K", values
lu

~-{hen the major isoz;}'ffie of leg tissue was electrophoresed on starch

Kinetic properties of LOH from various tissues of C. magister are

ever, the apparent K for pyruvate of the purified heart preparation
H

ranged from 9.0 to 11.5 x 10-4 M, significantly higher than any other

gel with beef heart LDH, the leg isozyme of E. magister moved 38% of

significantly different at the P .05 level.

though, since Gleason, et al (1971) also found that one LDH isozyme

purity of the LOH did not affect the apparent K~ for pyruvate at 100,

cantly different from those values fOQ~d for the crude samples. How-

for pyruvate of purified leg and claw tissue samrles were not signifi-

present in the leg tissue, comprisine only about 5% of the total LDH,

The apparent Ku for nyruvate of the crude preparation::: studied ranted
!,J

from approximately 3 x 10-4 M to 5' x lo-h 1,i. These values are n0t

can not be dra.m from the relative mobilities of various LLH isozj~es,

migration t~e as in these experiments. Phylogenetic relationships

apparent KIo' found. Apparently the tissue source and the state of
".

as beef heart LDH on starch gel using the same buffers, current, and

is uncertain at this time. It is possible that a second isozj~e

from Alpheus armillatus migrated 37% of the distance traversed by

is not electrophoretically different enough or present in a sufficient

the distance i'rcm the origin traversed by the beof heart LDH. Gleason,

et al (1971) found that the LDH from Q. anten~arius moved 29% as far

I

I
f
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150
, and 20°C, except for the purified heart sample. If the enzyme

found in the heart and peripheral muscle tissues is indeed the same

enzyme, then it would follow that the apparent KE for pyruvate should

be the same for the purified heart sample as for the purified leg and

claw samples. However, a regulator might be present in the cells of

one tissue type and not in the other. If such a regulator existed, it

might affect both crude and purified heart samples, but not the purified

sample alone.

another hypothesis is that a second isoz~~e is present, which

would alter the kinetics found in the tissue possessing it. The

existence of this second isozyme in leg muscle is suggested by DEAE-

Cellulose chromotography (see Fig. 5). However, it can not be postu-

lated at this time how this second isozyne could alter the apparent K"
......

values for pyruvate of a purified sample without altering the apparent

Kr values for pyruvate of a crude samnle of LDH from the same tissue.

A third hypothesis is that the purified heart solution was too

dilute. Markert and ~assaro (1968) demonstrated that certain LDHs will

dissociate and lose sor,Ie catalytic ca~ability when the enzyme C01"cen-

tration is less than 0.5 mg/ml. The LDH concentration in all purified

heart samples was much less than that for purified claw and leg samples,

never exceeding 0.1 mg/rol. It has bee~ shmvn in vertebrate LDHs that

a decrease in LDH concentration in the range used in the present exp8ri-

ments will cause a decrease in the apparent KK fer pyruvate (7~tch,

et aI, 1970). However, the effect of low enzyme concentrations on

invertebrate LDHs has not been studied. Further experiments would

have to be performed in order to provide an explanation for the increase
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in apparent K~, for pyruvate after the purification of a heart sample
M

from £. magister.

The maximum velocity of the pyruvate to lactate reaction was

attaine~ at 5 m~ pyruvate at 100e and 10 ~~ pyruvate at 200e for all

show slight inhibition at high pyruvate concentrations at the average

samples studied. This value could be higher for the leg an~ claw

the concentration of pyruvate causing significant inhibition are almost

The acparent K~, for pyruvate and
1'.'.

f. nagister LDH is similar to H. a~ericanus LDHs with regards to

. 0
habitat temperature (10 C).

catalytic properties (see Table 1).

at 10 ~J pyruvate. The LDH enz~e in ~. rna~ister therefore appears to

at 10 m~ pyruvate ranged from 5.2 to 7.8% when all of the data for a

tissue was averaged together. The percent inhibition at 150 and 200 C

experiments. The amount of inhibition incurred by the various samples

saw~les, but 10 wM pyruvate was the highest concentration used in the

was not significant for any heart, leg, or claw sample, while the per­

cent inhibition at 10°C for these preparations was only sli~ht (5 to 8%)

identical for the enzymes of both species, while the optimal nyruvate

concentration is five tjmes greater for Q. Tn1.r;ister LDB at 20°C than

for H. americanus LDHs at 25°C. The kinetic para~eters for Q. nagister

LDH are all twice the magnitude for the corresponding values for the

LDH of Artemia salina. The properties of the LDHs of Faralithodes

camtschatica are also different from those of C. ma7ister LDH. The

~

l

I;
I
j
1>.

apparent KH for pyruvate of Paralithodes LDH at 100e is 3.0 w:,
'"

slightly less than the value for C. nagister U1H, while the oDtir.1al

pyruvate concentration and pyruvate concentration causing significant



inhibition are five ann three times r:reater, resnectively, for Cane,:;r

mapj.ster. The properties .of the LDH in C. magister, then, more closely

resemble the properties of the enzymes fou!1d in Homarus tail muscle

than the enzymes fcund in Artemid. and Faralithodes.

The LDH found in the peripheral muscle tissues of Limulus

polyohemus operates maximally at approximately the S30me cOY1 centrations

of pyruvate as Q. mavister LDH, but the aPf:arent \i for pyruvate is

much lovier. LDH from Li:r:ulus heart tissue can ocerate at a lT.uch lOVier

range of pyruvate conce:1tration than can LI:H frOlf! Q. mapister heart

tissue.

The optimal py"ruvate concentration, e.g. the concentration of

pyruvate at which the reaction rate is a rr,axirn.l.'Tl, and the pyruvate

concentration causing significant inhibition are much higher in

C. ma~ister than in the LDH of organisms of other phyla listerl in Table 1,

while the values for the apparent K" values for pyruvate of the other
.:.l~.

LDHs are both higher aw' lC7Ier than the value fer :::. rr:aC'ist8r LIl!!.

~'d th the exception of Crassostrea virp;iniea, all of the non-crustacea"

invertebrate LDHs appear to be suited for catalysis at much 101ier

concentrations of pyruvate than is the LDE froHl ~. ma~ister. This does

r.ot necessarily mean that the concentration of pyruvate is consistently

lowe: in the tissue::; of non-crusta~ea~ invertehrates. It do,os mean,

though, that the LDH enz~ne in C. ~a~ister can ODerate les~ effectively

at all levels of pyruvate than the LDHs of non-crustacean invertebrates.

The pH profile of the r8action nyruvate to lactate fer C. ffiaFister

LDH shows a maximum at pE value;, helow 7. r:. iJ. rapid decline in reaction

rate is observed at pH values above S.D. ~~i!llilar results '''en? reported
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for beef heart LDH (~iner & Schwert, 1957), r~bbit LDH-l (Fritz, 1967),

and pig heart and muscle LOHs (Jaenicke, at al, 1971). In contrast,

rabbit LDH-5 has a defi~ite maximu~ at pH 6.h, with a substantial

decrease in reaction rate below pH 6.2 and abcve pH 7.2. No pH profiles

for invertebrate LDHs have been studied. The LDH in C. ma~istar

appears to have similar charged groups participating in catalysis at

t.he active site as the vertebrate LDHs. However, the physiological

pH of Q. magister hemolymph is more alkaline than the blood of most

vertebrates (Johansen, et al, 1970).

The kinetic experiments conducted over the 100
_ 200 C range demon-

strated a temperature independence for the KM for pyruvate of Q. magister

LDH. A constant K~ for pyruvate, independent of temperature over an

organism's habitat temperature range, has been shown for several fishes

(Hochachka ~ Somera, 1968, Somera, 1973), the Alaskan kinG crab (Somera

&Hochachka, 1969), and a snake (De Burgos, et aI, 1973). The teMpera-

ture independence in the king crab is explained by the presence of two

LDH isozJrmes. Both forms are active at low temperatures, while only

one isozyme, the "10w K,,'t LDH is active at higher temperatures.
l·t

Q. magister LDB is probably not operating in this ma~ner, since only

one major isoz,yme of LDH has been detected in this organism. ~TO

mechanisms of temperature adaptioD by LLH enzymes ~ere postulated by

the authors of the studies of trout and onhidian LDHs.

Many marine invertebrates are eur.fther:nal, meaning that through

genetic changes they have been able to adapt to wide changes in tempara-

ture. Control of its metabolic rate over a ranGe of temperatures is

one problem faced by such an organism. il.lthollgh LDH is only one of
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the many enzymes involved in the utilization of metabolites, the role

of LDH in anaerobic metabolism is well established (~ilson, et aI,

1963, Dawson, at aI, 196h, Fondy & Kaplan, 1965). Q. m'as;ister LDH

assu\TIption is unwise, due to the results obtained b:r Chance and others

in heart tissue, is quite contrary to th~ findings in other 0~~anisms

of lactate production may be a way to maintain homeostasis during a

The constant !\',.
i\'l

.. 0lJlme.postulated at this

for a crustacean, but the kinetic properties of this enzyme, when fOQnd

The existence of only one form of LDH in C. ~a~i3ter is not unique

stUdied to date, with the possible exceotion of LJH from flatfishes,

studied (see Table 1). All LDH isozymes isolated from heart tissues

the substrate pyruvate to LDH and then releasing the nroduc~ lactate.

ting a constant rate for the total catalytic precess involved-- binding

the experiments with Q. ~agister LDH can only be interpreted as indica-

The mechanism responsible for this tempera~ure ipdependence can not be

on a variety of enzymes. In liffht of this information, the results of

Hochachka and Somero (1973) have analysed their results by equatine;

Sonero that the K~ for nyruvate is a reflection of the enzyme-SUbstrate

affi!1ity, expressed as KS; hO-~Tever, Horris (1968) notes that this

temperature change.

temperature range. For E. magister, then, the temperature independence

has an apparent K,t for pyruvate which is constant over the physiological
.tJ

KH values for pyruvate with LDH-pyruvate affinities...~~

may not be equal to the dissociation constant KS for LDH and pyruvate,

since the K~ for pyruvate involves the dissociation of the LDB-lactate

complex to LDH plus lactate. It may be assumed by Hochachl:a and
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have a lower KM for pyruvate, operate optimally at lower concentrations

of pyruvate, and show greater inhibition at elevated pyruvate concen-

trations than do the LDH isozymes found in the peripheral muscle tissues

of the same organisms. In vertebrates, these findings have been

associated with the tJ~e of environment surroQDding the cells of the

tissue. Skeletal muscle often experiences anaerobic periods durin~

short bursts of activity, while heart tissue is usually fouDd in an

aerobic environment, due to the constant inflow of freshly oxy~enated

blood or hemolymph and the rhythmic contractions 8haracteristic of

heart tissue. The partial pressure of oxygen in the hemolymph of

g. magister is very high when compared with the hemolymph of other

decapod crustaceans. The arterial partial pressure of oxygen in

c. magister hemolymph is 91 mm Hg, while the venous partial pressure

of oxygen is 21 mm Hg (Johansen, et aI, 1970). The hemolymph of most

decapod crustaceans has a Pa02 of 5-29 ~~ Hg and a P
v
0

2
of 2-18 ~~ Hg

(Jones, 1972). Therefore, Q. magister would be expected to possess

different LDH isoz~nes in the heart and peripheral muscles, as is the

case in the vertebrates (Dawson, at aI, 1964). The partial pressure of

OX"jgen in the hemolymph of Limulus is equal to or less than the partial

pressure of oxygen in the hemol~nph of Q. ma~ster. Put even in

Limulus the heart and peripheral muscles have kinetically distinct tDH

isozymes, similar to those found in man~T va rtp.brate LDH sys te'1ls.

Wuntch, at al (1970), however, has sh01.'VT1 that LDB from heart and

skeletal muscle in pigs, rats, and rabbits does not exhibit any sub-

strate inhibition when assayed at physiological concentrations of LDH.

They concluded that substrate inhibition by pyruvate may not occur
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in vivo in many vertebrates. Similar evaluations of invertebrate LDHs

have not been made. There is a possibility that the kinetic properties

of LDH are not that important in C. magister tissues, and that the

lack of inhibition by high pyruvate concentrations exhibited by LDH

from heart tissue is of no consequence to the crab. Nevertheless, it

would still be interesting to determine the kinetic properties of the

LDH found in the heart tissue of ~. am~ricanus, in order to see if the

homologies between the peripheral muscle LDHs of H. americanus and

£. magister extends to the LDHs found in the hea~t tissues of these

organisms.
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Table 1. Kinetic properties of several vertebrate and invertebrate

lactate dehydrogenases.

• j

i
I
J



Organism

Vertebrate 1-4
range

Arthropods

Optimal
pyruvate

TABLE l-l~

~vr~ruva tA)

0.9 - 1.4 (~h)
1.3 - 32 (i\'!h)

Significant
inhibition

30

Homarus
arne rican us:;;

A t " 1" 7r emla sa lna

Paralithodes 8
camtschatica

Limulu3 6
polyphemus

20 (A) h.l (A) 100 (A)
21 (B) h.o (B) >100 (B)

21) 1.2 hO

10 0.8 - 3.0 ho

1.6 (heart) 2
40 (muscle) 0.7 >100

Polychaetes

F • " 6"erelS Vlrens

Mollusks

Loligo pealEd 9

Cras~os~r~a 10
vlrglnlca

'rapeworms

H:>rm.enolepis 11
diminuta

Parasitic nematodes

. . 12AscarlS suum

cuponges

Scyph<: linfualO

Bacteria

Lactobacillus 13
plantarum

8

30

10

1.3

6.4

2.0

1.7

2.8 - S.h

1.0

3.7 (1.)
4.7 (D)

8

200

10

20

* All values are given in Qnits of 10-4 M pyruvate.
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Footnotes for Table 1

IFrom Wilson, et al (1963).

2From Pesce, et al (196ld.

3From Fondy &Kaplan (1965).

uFrom Pesce, et al (1967).

5From Kaloustian, et al (1969).

6From Long &Kaplan (1973).

7From Ewing & Clegg (1972).

8From Somero &HochacWca (1969).

9From Roberts, et al (1958).

lOFrom Ha.r!L."Ilen (1969).

IlFrom Burke, et al (1972).

12From Langer & Smith (1971) •

13From Dennis &Kaplan (1960).
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Table 2. Stereospecificity of lactate dehydrogenase .fror.~ Ca'1cer

magister leg and heart tissues.
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*Results from assays using L. x 10-2 ~; lactate and

4 x 10-3 ill NAD+; assays at 20°C. Activity monitored

'(

Preparation

Leg crude

Leg purified

Heart crude

Heart purified

at 3L.O run.

11
..-~

TABLE 2

Lactate isomer ,60D/min.{!-

DL 0.36

L O.lR

D 0.02

DL 0.30

L 0.30

D 0.00

DL 0.06

L 0.11

D 0.01

DL 0.02

L 0.09

D 0.00
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Figure 1. Molecular weight determination of ~. magister LDH

on Sephadex G-200 (Fine). The standards are, from top to

bottom: catalase, catalase (m.w. determined by Andrews (1905»,

rabbit muscle aldolase, beef heart LDH, bovine serum albu.'llin,

catalase subunit, o<-chymotrypsinogen, and sperm whale reyoglobin.

Procedure described in text. Closed circle denotes C. magister

LDH sample.



35
Figure 1

•o

20 60 100

Elution Volume (ml)

2

4

6

20

10

40 r---

L
d
:J
U
(1)

o
2:

I
ii
i

I
t



36

Figure 2. Elution pattern of LDH from f. magister leg tissue.

() , absorbance 280 nID; tt , enzj~~ activity, expressed as

Buffer: 0.1 H HaPO" nB 7.h, and 0.1 r:. ir ·~"l.Cl.
·t

Procedure described in text.
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Figure 3. FolyacFJlamide gel electrophoresis in sodium dodecyl

sulfate of purified heart LDH from £. magister. Standards, 4t ,

from top to bottom: ovalbumin, pepsin, and sperm whale ~yoglobin.

Open circle denotes LDH sample. Procedure according to text.
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Figure 4. DEAE-Cellulose chrorwtography of a purified LDH sa:rrple

from £. maf!ister heart tissue. I<::nzyme activity expressed as

.60D340/min. Buffer used: 0.01 ii, TriE-HCl, pH 7.6. Procedure

described in text.

Figure S. D&~E-Cellulcse chroDotography of a purified LDH sample

frc~ £. mafister leg tissue. Enzyme activity expressed as

.60D310/~in. Buff8r used: 0.01 ~ Tris-HCl, pH 7.6. Procedure
d

described in text.
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Figure 6. A sketch of starch gel electrophoresis of crude leg (L),

heart (H), and claw (C) tissue samples from E. magister. 131 starch

gel (w:v) in 56 ~~ Na2HPO
h

and 9 m~ citric acid, pH 8.0. Electrod9

buffer: 32 ~~ Na2HP0
4

and 3 ~~ citric acid, pH 8.0. 200 volt

current at 8-15 rna applied for 23 hours.

Figure 7. A sketch of starch gel electrophoresis of a crude leg

tissue sample from~. magist8~ (1), purified beef heart LtH (BH),

and a mixture of the two saffiples (If). S~~e buffers and gel as in

Figure 6, eXC8!!t both buffers at pH 7.0. 200 volt current at

7-12 rna applied for 16 hours. 0 spots denote v.'cak stainins.
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Figure 8. The effect of pH on the initial velocity of the reaction

pyruvate to lactate for a crude LDH sar.mle from C. macister It3g

tissue. Pyruvate concentr(:1tions used: 0 O.Sri!., A 2.5m~.:, and

in text.

oAll assays performed at 10 C. Procedure described
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Figure 9. The effect of temperature on the apparent K~ for

pyruvate of crude LDH samnles from Q. magister heart, leg, and

claw tissues. All points are an average value for five different

experiments, with the standard error represented hy error bars.

Procedure outlined in text.
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Figure 10. The effect of temperature on the appare~t KM for

pyruvate of purified LOR samples from 2. ~a~ister heart, leg,

and claw tissues. All pcints are an averar,e valuB for five

different experiments, with the standard error rc?resented by

error bars. Procedure described in text.
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Figure 11. The percent of the maximur.1 rate as a function of

pyruvate concentration for beef heart LDH ~ and Q. maeister

LDH from leg • and heart 0 tissues. Procedure d(~scribed

in text.
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Figure 12. The percent of the maxim~~ rate as a function of

pyruvate concentration for the followip~ tissues: ~. magister

leg. and heart 0 , and Limulus polypheT11.1s peripheral m.uscle

A and heart muscle ~ • Procedure for .Q. magister samnles

described in text. Data for Lim.ulus samples from Long ~ Karlan

(1968).
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