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Visual search is an important part of human-computer interaction (HCI). The visual

search processes that people use have a substantial effect on the time expended and

likelihood of finding the information they seek. This dissertation investigates visual

search through experiments and computational cognitive modeling. Computational

cognitive modeling is a powerful methodology that uses computer simulation to capture,

assert, record, and replay plausible sets of interactions among the many human processes

at work during visual search. This dissertation aims to provide a cognitive model of

visual search that can be utilized by predictive interface analysis tools and to do so in a

manner consistent with a comprehensive theory of human visual processing, namely

active vision. The model accounts for the four questions of active vision, the answers to

which are important to both practitioners and researchers in HCI: What can be perceived
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in a fixation? When do the eyes move? Where do the eyes move? What information is

integrated between eye movements?

This dissertation presents a principled progression of the development of a

computational model of active vision. Three experiments were conducted that investigate

the effects of visual layout properties: density, color, and word meaning. The

experimental results provide a better understanding of how these factors affect human­

computer visual interaction. Three sets of data, two from the experiments reported here,

were accurately modeled in the EPIC (Executive Process-Interactive Control) cognitive

architecture. This work extends the practice of computational cognitive modeling by (a)

informing the process of developing computational models through the use of eye

movement data and (b) providing the first detailed instantiation of the theory of active

vision in a computational framework. This instantiation allows us to better understand (a)

the effects and interactions of visual search processes and (b) how these visual search

processes can be used computationally to predict people's visual search behavior. This

research ultimately benefits HCI by giving researchers and practitioners a better

understanding of how users visually interact with computers and provides a foundation

for tools to predict that interaction.

This dissertation includ6s-both previously published and co-authored materiaL
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CHAPTER I

INTRODUCTION

Visual search is an important part of human-computer interaction (HeI). Users search

familiar news web sites to locate new stories of interest. Users search the interfaces of

new, unfamiliar desktop applications to familiarize themselves with those applications.

Users search the virtual environments of games to locate and identifY objects that require

more scrutiny or action. For sighted users, nearly every action requires some visual

interaction and many of these actions require visual search, to find familiar or novel

information.

Visually searching for information is quite often the fastest and most useful way of

finding information in a variety of user interfaces. Functionality such as web search

engines or the "Find" command found in many operating systems can be used to find

items on a computer screen quickly. However, there are many instances in which visual

search is more useful, such as (a) searching among many similar results where it is

difficult to specifY a search query to locate the desired target, such as examining web

search engine results, (b) when an application does not include a find command, such as

in video games, and (c) when the exact target is not known by the user, such as when

looking for items that match some vague concept or goal. In these cases, if the eyes are



2

used to search instead, fast eye movements can be used rather than slower typing, many

visual objects can be evaluated by the user simultaneously, and words can be located that

the user may not have generated spontaneously for textual searches.

The visual search processes that people u~e in Hel tasks have a substantial effect on

the time and likelihood of finding the information they seek. Users encounter many

challenges finding the information they seek when visually searching. Figure 1 shows a

the home page of a health information web site. In this example layout, if a user is

searching for drug interaction information, they may search the menu at the top and

encounter many distracting images before they realize they need to perform a text search

using the text field below the image of the number two with the orange background. As

another example using a simpler interface, Figure 2 shows a page from the popular web

site craigslist. Visual search of this page is affected both by the layout used (grouping,

color, spacing, text size, etc.) and the strategies used while visually searching the page

(slow item-by-item, using labels or not, following the columns or not).

Visual search is a particularly fascinating human activity to study because it requires

a complex and rapid interplay among three major processes: perceptual, cognitive

(decision), and motor. Perceptual processes affect how information from the environment

reaches other processes. An example of a perceptual process that affects visual search is

the retinal availability: The information that can be perceived through the eyes will vary

as a function of the orientation of the eyes, because visual acuity is higher in the center of
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Figure 1. A section from the Health.com home page. Users encounter many challenges
when trying to location information like how two drugs may interact, such as distracting
advertisements, headings in many different colors and typefaces, and numerous menus
and visual hierarchies. (Source: http://www.health.com/health/ July 24, 2008)
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people's field of vision (i.e. the fovea). Cognitive processes affect how information from

the environment is used, such as deciding what information in the periphery is most

relevant and hence where to move the eyes next. Motor processes result in actions in

relationship to the environment, such as orienting the eyes to a new location or clicking

on a web page link. It can be difficult to understand and predict the effects and

interactions these complex processes have on people's visual search behavior.

Computational cognitive modeling is a very powerful methodology for capturing,

asserting, recording, and replaying plausible sets of interaction among the processes at

work during visual search. In this dissertation, computational cognitive models are

computer simulations of how people perform one or a set of tasks. Cognitive models of

visual search have been built to simulate perceptual processes, such as proposals for how

the visual features of objects are detected, where visual features are detected, and when

visual features are detected. The models simulate cognitive processes such as strategies

that people use when conducting visual search in various tasks, such as how people

visually search groups of computer icons and how using various devices while driving

affects people's visual scanning of the environment. The models simulate motor

processes for a range of human motor activities, such as the time it takes to move the eyes

or a cursor to an object on the screen.

The most important contribution of computational cognitive models to the field of

HCI is that the models provide the science base that is needed for predictive interface
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analysis tools. Projects such as CogTool (John & Salvucci, 2005) and CORE/X-PRT

(Tollinger et aI., 2005) are at the forefront of tools that utilize cognitive modeling to

predict user interaction based on a description of the interface and task. These tools

provide theoretically-grounded predictions of human performance in a range of tasks

without requiring that the analyst (the person using cognitive models) be knowledgeable

in cognitive, perceptual, and motoric theories embedded in the tool. Designers of device

and application interfaces could use such tools to evaluate their visual layouts, reducing

the need for more expensive human user testing early in the development cycle. Potential

usability problems in interfaces such as the web page shown in Figure 1 could be

identified early, before time-consuming human user testing. For example, an automated

interface analysis tool could help designers discover that the health information web site

shown in Figure 1 may not do a good job of supporting important tasks, such as finding

different kinds of drug information. The tool could show likely visual search behavior if a

user were to pursue such a task. A user might be likely to miss the small menu item

"Drug Finder" near the upper-right comer. If a user does arrive at the large label "4 Ways

to Search Conditions, Drugs, and Symptoms" in the middle of the page, that user might

be likely to terminate their search on the sub-label "1 Browse Conditions" and never use

the appropriate search box with the label "2 Look Up Drug Information."

Predicting people's visual interaction is one facet of user behavior that research with

interface analysis tools is trying to improve. The most recent version of CogTool (Teo &

John, 2008) now incorporates modeling work presented in this dissertation (and
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published earlier (Halverson & Homof, 2007». The research presented here is already

helping current interface analysis tools to better simulate visual search in HCI tasks.

However, CogTool does not yet account for the human eyes, where they move, and what

they do and do not see. That is, automated interface analysis tools do not yet simulate the

necessary processes to simulate active vision.

Active vision (Findlay & Gilchrist, 2003) is the notion that eye movements are a

crucial aspect of our visual interaction with the world, and thus critical for visual search.

When people interact with the environment (e.g. a user interface), they constantly move

their eyes to sample information using fixations. A fixation is the time when the eyes are

relatively steady. Accounting for these eye movements will not only allow a better

understanding of the processes underlying visual search, but also a better understanding

of how people are using computer interfaces and the like. Any simulation of active vision

must address four questions, the answers of which are important to designers and those

interested in HCI. What information in the environment do we process during each

fixation? Where do we move our eyes and why? When and why do we move our eyes?

What information from the environment do we maintain across fixations?

The goal ofthis dissertation is to build a computational model of visual search in HCI

that integrates a range of theory consistent with the notion of active vision. This research

advances the usefulness and applicability of models of visual search based on original

research of eye movements in visual search, a synthesis of existing literature, and
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principled methods for iteratively improving models of visual search based on eye

movement data. The aim of the work presented in this dissertation is to improve the

overall usability of computer systems by developing fundamental theory and

understanding of how users visually interact with computers. Tools for the prediction of

user interaction do not yet have an active vision model that can simulate people's visual

search behavior. This research is one step towards that comprehensive, active vision

model. This dissertation presents a detailed step-by-step principled progression of the

development of a computational cognitive model of active vision. The models are

explained and detailed with a variety of eye movements to provide answers to the

questions put forth by active vision.

This dissertation advances the field ofHCI -particularly with respect to computer

science - as well as the field of cognitive science. This research benefits HCI and

computer science by providing a theory-based foundation for engineering approaches to

interface design, such as CogTool (John & Salvucci, 2005), to better predict how

computer users visually interact with computers. Additionally, this research advances the

field of computer science by improving an understanding of end users, specifically a

computational instantiation of how people use their computers. This research also

advances cognitive science by providing an instantiation of psychological theory on

visual search in a computational model that is a testable integration of that theory.
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The remainder of this dissertation is arranged as follows. Chapter II reviews literature

on cognitive modeling and visual search that is relevant to a computational cognitive

model of active vision for HCr. Chapter III presents three experiments, each of which is

aimed at better understanding how people visually search structured, text-based layouts.

Chapter IV discusses the development of an integrative computational cognitive model of

visual search based on experiments discussed in the previous chapter. Chapter V

summarizes the research, identifies key contributions, and suggests future directions.
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CHAPTER II

LITERATURE REVIEW

In order to create a model of visual search that is useful to HCI, we must first

consider the general premises of such a model. This section provides an overview of

relevant literature on visual search and computational cognitive modeling.

This dissertation is concerned with how people visually search displays in everyday,

natural tasks. Typically, when people use visual search in HCI the eyes are moved and

independent shifts of attention (i.e. covert attention) are not used (Findlay & Gilchrist,

1998,2003). Since different information is available depending on the orientation of the

eyes (Bertera & Rayner, 2000; Findlay & Gilchrist, 2003), the movements of the eyes (as

well as head and body movements) are important for models of visual search in HCI.

This is especially true due to the increasing size of computer displays and the increasing

ubiquity of computing interfaces. Therefore, this dissertation will focus on the role of eye

movements in visual search.

2.1 Previous Models of Visual Search in HCI

A variety of models have been developed to predict visual search behavior. Some

models have been developed specifically to predict and explain performance in a narrow

domain, such as graph perception. Others have been developed to predict and explain the
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effects of specific visual features in a broad range of visual search tasks. The following is

a brief overview of relevant models to provide context for the remainder of the chapter.

Guided Search (GS ; Wolfe, 1994; Wolfe & Gancarz, 1996) is a computational model

of how visual features, such as color and orientation, direct visual attention. Guided

Search predicts that the order in which objects are visually searched is affected by the

following: the "strength" of objects' visual features (e.g. their blueness, yellowness,

steepness, and shallowness), the differences between objects, the spatial distance between

objects, the similarity to the target, and the distance of objects from the center of gaze

(i.e. the eccentricity).

The Area Activation Model (AAM ;Pomplun, Reingold & Shen, 2003) is also a

computational model of how visual features direct visual attention. The AAM shares

many characteristics with GS, but differs in at least one important way. The AAM

assumes that all objects near the center of gaze are searched in parallel and GS assumes

that objects are searched serially.

Barbur, Forsyth, and Wooding (1990) propose a computational model to predict eye

movements in visual search. The model uses a hierarchical set of rules to predict where

people's gaze will be deployed. Like the AAM, Barbur, et al.'s model assumes that all

objects near the center of gaze are searched in parallel. It differs from the GS and AAM

in that eccentricity is the only visual feature that determines where the gaze moves next.
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Understanding Cognitive Information Engineering (UCIE) is a computer model of

human reasoning about graphs and tables (Lohse, 1993). UCIE is based on GOMS

(Goals, Operators, Methods, and Selection Rules; John & Kieras, 1996), an engineering

model for predicting task execution time. UCIE extends GOMS with a model of visual

search. The time to perceive objects, eye movements, and a limited memory for

information provide constraints for the simulation of how people scan graphs and tables

to answer questions about the graph or table.

EPIC (Executive Process-Interactive Control) is a framework for building

computational models of tasks that lends itself well to building models of visual search

(Kieras & Meyer, 1997). EPIC provides a set of perceptual, motor, and cognitive

constraints based on a variety of psychological literature. Models of visual search built

within EPIC tend to explain visual search as the product of cognitive strategies,

perceptual constraints, and motor constraints.

2.2 Active Vision Theory

Active vision is the notion or collection of theory that asserts eye movements are

central to visual processes, including visual search (Findlay & Gilchrist, 2003). Active

vision poses four central questions that would need to be addressed in a model of visual

search: (a) What can be perceived when the eyes are relatively steady? (b) When and why

do the eyes move? (c) Where do the eyes move next? (d) What information is integrated

between eye movements?
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2.2.1 What Can Be Perceived?

What a user can visually perceive in an interface at any given moment is an important

question that must be answered by a model of visual search. For example, will the user

notice the notification that just appeared on their screen? Or, can the user perceive the

differences between visited and unvisited links' on a proposed web page?:A model of

visual search must be able to predict if and when a user can perceive basic and complex

features of a visual layout. Most of the models previously reviewed make different

assertions about the information perceived in each fixation and the region from which

this information can be extracted.

One possible assumption about what can be perceived is that all objects within a fixed

region can be perceived. Some models of visual search make this assumption. Barbur, et

al. assume that all information within 1.2 degrees of visual angle of fixation center can be

perceived (Barbur, Forsyth & Wooding, 1990). DeIE (Lohse, 1993) assumes that all

items within an unspecified radius are processed, but only the perception of the object of

interest at the center of fixation is considered. Guided Search (Wolfe & Gancarz, 1996)

assumes that up to 5 objects near the center of fixation are processed during each fixation.

Another possible assumption about what can be perceived is that the distance between

the stimuli and the center of fixation influences what can be perceived. The Area

Activation model (Pomplun, Reingold & Shen, 2003) assumes that all items within a

"fixation field" are perceived. These fixation fields are two-dimensional normal

distributions centered on the center of fixation and vary by the properties of the stimuli in
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the layout. While the authors of the Area Activation model argue that the fixation field

will vary based on task difficulty, foveal load, experience, density, and heterogeneity,

their model does not predict a priori exactly how these factors will affect the field.

Rather, the fixation field is estimated experimentally using the number of fixations

required to search given stimuli. The problem with this method is that it requires the

modeler to collect data for each set of stimuli, and it assumes that the fixation field does

not vary across the visual layout even if the properties of objects vary.

Current models of visual search have not integrated all research findings that may be

relevant to predicting what is perceived in a fixation during visual search. While some

models assume that all items within a given region can be perceived in parallel, no

differentiation is made for vertically or horizontally organized objects. Research has

shown that the region from which information is used during a fixation may be larger in

the horizontal dimension (Ojanpaa, Nasanen & Kojo, 2002). As another example, Casco

and Compana (1999) found that search time for objects defined by simple features was

affected by density and not by spatial perturbation. Contrarily, the search time for objects

defined by combined features was affected by spatial perturbation and not by density.

While a predictive model need not address all observed phenomena to be useful, more

research may be required to determine what can be perceived in a fixation based on the

stimuli present.
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A straightforward model of visual search for HeI need only assume that a set number

of objects or a set region is perceived during each fixation. This is what many existing

models assume (Barbur, Forsyth & Wooding, 1990; Homof, 2004; Lohse, 1993; Wolfe &

Gancarz, 1996). This simplifies the model, as only object location is required to

determine which objects fall within the set region and are consequently perceived.

Additionally, such a model would require little, if any, additional empirical work. As

density does not seem to affect the effective field of view (the region from which

information is used in a fixation) in visual search (Bertera & Rayner, 2000), we may also

want to restrict our straightforward model to a set region around the center of fixation. A

reasonable approximation for this region is one degree of visual angle radius, as this

distance has been used to explain visual search for simple shapes (Barbur, Forsyth &

Wooding, 1990) and text (Homof, 2004).

2.2.2 When Do the Eyes Move?

If a model predicts what a user can perceive in an interface within a fixation, the

model must also account for when the eyes move. For example, will the eyes remain on

complex icons longer than simple icons? The time between eye movements is called

saccade latency or fixation duration.

Four explanations of fixation duration control have been proposed in the literature

(Hooge & Erkelens, 1996): (a) preprogramming-per-trial, (b) preprogramming-per­

fixation, (c) strict process-monitoring, and (d) mixed-control. The first explanation,

preprogramming-per-trial, is that the required fixation duration is estimated before the
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visual search task is initiated and this estimated fixation duration is used throughout the

visual search task. This explanation does not preclude preprogramming multiple fixation

durations based on the stimuli encountered. The second explanation, preprogramming­

per-fixation, assumes that fixation durations are dynamically estimated throughout a

visual search task. If previous fixations were too short to perceive the stimuli before

initiating a saccade, future fixation durations are lengthened; if previous fixations are

longer than needed to perceive the stimuli, future fixation durations are shortened. The

third explanation, strict process-monitoring, is that fixation durations are not estimated,

but rather directly determined by the time to perceive the fixated stimuli. The last

explanation, mixed-control, assumes that saccades are sometimes initiated by the time to

perceive the stimuli and at other times by previously estimated durations. Two of these

four explanations of fixation duration, strict process-monitoring and mixed control,

require consideration of how long it takes to process objects in order to determine how

long fixations will be. Therefore, to fully understand these last two explanations,

additional information on the time to process visual objects is required.

Models vary considerably with respect to the how long it takes to visually process

objects. Some assume a fixed time per object (Anderson, Matessa & Lebiere, 1997;

Byrne, 2001; Wolfe, 1994) or strategy (Kieras, Wood & Meyer, 1997).

Models that assume a fixed time to process objects also tend to assume a short

processing time. Processing an object takes 50 ms in Guided Search (Wolfe, 1994) and
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the same amount of time in models based on ACT-R's Visual Interface (Anderson,

Matessa & Lebiere, 1997; Byrne, 2001). When eye movements are considered in Guided

Search (Wolfe & Gancarz, 1996), the processing time per fixation is also fairly constant,

inspecting four to five items in 200 to 250 ms.

Models that propose a varying time for processing objects do so in a variety of ways.

Eye Movements and Movements of Attention (EMMA; Salvucci, 2001a) utilizes two

properties of an object to determine the encoding time. The first is the probability of the

object appearing in a layout (i.e. the normalized frequency). The second is the

eccentricity of the object relative to the center of fixation. DCIE (Lohse, 1993) predicts

processing time according to the number, proximity, and similarity of all objects within a

limited range of fixation center. Models based on EPIC (Kieras & Meyer, 1997) generally

assume a constant time to perceive each property of an object, but these times are

determined independently for each feature. So, while the time to perceive each feature is

generally constant, the time to perceive all properties of the object will vary with the set

of features an object has.

Object processing time is one of the most non-standard properties across different

models of visual search. Processing time in most models is a single parameter, with little

differentiation for perceiving stimuli of different complexities.
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2.2.3 Where Do the Eyes Move?

The order in which items are searched in a layout may have a large impact on

usability and implications for the visual tasks that a layout will support well. Will a

visitor to a web page look in the location the designer intends for a task? For example, in

Figure 1, will users first look at the deep blue and light blue menu bars at the top first or

will they look at the large image promoting the "Statin Study"?

The path the eyes follow is usually referred to as the scanpath. A great deal of

research has been conducted to determine the factors that influence the scanpath in visual

search. Research pertaining to the scanpath attempts to understand what factors guide

visual attention or the eyes. Understanding the scanpath is seen by many as the core to

understanding visual search, and is the focus of many models of visual search.

Two influences on scanpaths are (a) guidance by features, or bottom-up guidance, and

(b) guidance by strategy, or top-down guidance. The intrinsic features (e.g. color, size,

shape, or text) of objects affect the order in which objects are visually searched. When

features of the target are known and these features can be perceived in the periphery, this

information can guide visual search. Most existing models of visual search use intrinsic

properties to guide search in some way. Guided Search 2 (Wolfe, 1994) builds an

activation map based on the color and orientation of objects to be searched. Activation

maps are spatial representations of where in the visual environment information exists.

Visual search is then guided to the items in the order of greatest to least activation.

Guided Search 3 (Wolfe & Gancarz, 1996) adds the additional constraint that objects
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closer to the center of fixation produce more activation. The Area Activation model

(Pomplun, Reingold & Shen, 2003) is similar to Guided Search 2, except that search is

guided to regions of greatest activation instead of items.

A great deal of research has been conducted to determine which features can guide

where the eyes move in visual search (see Wolfe & Horowitz, 2004 for a review). Based

on the strength of current evidence, Wolfe and Horowitz concluded that there are four

features that can guide visual search: color, motion, orientation, and size. While other

attributes may also guide visual search, there is either contradicting evidence or

insufficient evidence to conclude that other features do guide search. Most of the research

reviewed by Wolfe and Horowitz has investigated visual search without eye movements.

That is, the use of covert attention was required of the participants. So, can such results

be used to inform eye movements in models of visual search? Hopefully, yes. Findlay and

Gilchrist (2003) argue that shifts of covert attention are associated with eye movements.

If the two are associated, some or all factors that affect covert attention may also affect

eye movements. However, even if it is assumed that much of the covert attention

guidance phenomena can be directly applied to eye movements, it is still unclear to what

extent or where in the visual field this guidance information is used. The literature lacks a

clear specification of where in the visual field visual features can be used to guide search.

Intrinsic features are not the only influence on the scan path, especially if (a) the

peripherally available information cannot guide search or (b) the exact identity of the
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target is unknown. Strategic decisions, or top-down guidance, also influences the order in

which objects are searched.

Strategies playa major role in determining saccade destinations. Hierarchical menus

have been found to motivate fundamentally different strategies than non-hierarchical

menus (Hornof, 2004). The ordering of menu items, either alphabetically or functionally,

decreases search time, and therefore may motivate fundamentally different strategies than

randomly ordered menus (Card, 1982; Perlman, 1984; Somberg, 1987).

There has been substantial research on factors that influence the destination of the

eyes in visual search, and a fair amount of this research is applicable to predictive models

of visual search for HCI. Such models will have to consider both intrinsic features of

objects in the layout and strategies. Based on past research, models of visual search

should at least consider how scanpaths are influenced by motion, color, orientation, and

size. It is not clear how the effects of these properties should be represented in the model.

A common form of representation in the psychological models is the use of the activation

map. However, models need not be limited to such representations as long as the models

account for similar phenomena, such as density, distance from the center of fixation, and

cumulative effects of multiple features.

2.2.4 What Information Is Integrated Between Eye Movements?

Another important factor to consider in visual search is what information is integrated

between eye movements. In other words, how does memory affect visual search?
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Important factors to consider include: (a) What is remembered between fixations? (b)

How much can be remembered during visual search? (c) When is information forgotten

that is used during visual search?

Models of visual search for HeI need t? account for the ways in vyhich memory may

affect visual search. For example, when searching for a specific news article, will a user

remember which headings have already been searched, or will the user repeatedly and

unnecessarily revisit some of them? There are at least three types of memory that may

affect the visual search process: visual working memory, verbal working memory, and

spatial working memory (Logie, 1995).

Research suggests that neither visual nor verbal working memory have a major

impact on the fundamental visual search processes. Visual and verbal working memories

are limited capacity, temporary stores for visual and verbal information. These two

memories show little overlap in functionality (Baddeley, 1986). Interestingly, research

has shown that when verbal or visual working memory is occupied, visual search remains

efficient. When people visually search for a shape while performing a task that is

presumed to occupy visual working memory, the rate at which people visually searched

was unaffected (Woodman, Vogel & Luck, 2001). A similar result is found when visually

searching for a word while verbal working memory is filled (Logan, 1978, 1979). These

findings do not mean that working memory does not affect visual search tasks at all. In

general, for each modality, people can recall four things on average (Baddeley, 1986;
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Luck & Vogel, 1997). If the visual search task requires storing multiple items in memory

before search is terminated, limitations on working memory could require that the user

terminate search early or forget items for later use.

However, the use of spatial memory (i.e. memory for locations in space), especially

for where one has previously fixated, does appear to affect visual search. Research has

shown that when spatial memory is occupied, visual search efficiency is reduced (Oh &

Kim, 2004). A memory for previously fixated locations is also suggested by other

research. A study of the visual search in "Where's Waldo?" scenes, in which a cartoon

figure is hidden within complex scenes, found that saccades tend to be directed away

from the locations of previous fixations (Klein & MacInnes, 1999).

In general, models of visual search do not incorporate limitations of memory. There

are two major exceptions. The first is that many models of visual search assume a perfect

memory for objects searched (Anderson, Matessa & Lebiere, 1997; Barbur, Forsyth &

Wooding, 1990; Byrne, 2001; Hornof, 2004; Kieras & Meyer, 1997; Pomplun, Reingold

& Shen, 2003; Wolfe, 1994). The details of how this memory is implemented varies by

model, but in general all the models "tag" each item as it is inspected and then do not re­

inspect the objects unless all items have been searched without locating the target. The

second exception is that a popular cognitive architecture used to build computational

cognitive models, ACT-R (Anderson et ai., 2004), includes a rich representation of

memory. In short, ACT-R assumes that memory "chunks" have a likelihood of being
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recalled based on several factors, including the amount of time that has passed since that

information was perceived. This limitation has the potential to affect visual search. For

example, if visual search takes too long, it may be more difficult to retrieve (or recall)

information gathered earlier in the search.

2.2.5 Summary

Active Vision emphasizes the importance of eye movements. Active vision asserts

that understanding where and when the eyes move, and how information gathered during

eye movements is utilized, are critical for understanding vision and, in particular, visual

search. The literature reviewed suggests that no one model of visual search provides

answers to all of the questions of active vision. However, every question of active vision

is addressed by at least one model. The proposed answers for active vision will be used in

this dissertation, along with input from other literature and experimentation reported in

this thesis, to help build a candidate active vision model of visual search.

2.3 Specific Visual Search Phenomena

The following three sections discuss research on factors affecting visual search that

(a) are relevant to the design of user interfaces, (b) lend themselves well to building

computational models, and (c) affect eye movements in very specific ways. These factors

are density, color, and semantics.

2.3.1 Density a/Visual Objects

One common feature used in interfaces to indicate importance and association is

relative density of the visual objects (Mullet & Sano, 1995). Figure 3 shows one example
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Figure 3. A section from a Craigslist web page. The two labeled sections illustrate
differences in densities. The groups of words are sparse in Region 1 relative to Region 2.

The black rectangles and labels were added for illustration.
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of a web page that utilizes multiple densities. Most of the users' tasks in this layout will

be to locate the appropriate listing category. For example, a user may want to find a boat

for sale in Vancouver, Canada. In this web page, some of the groups of words (Region 1)

are sparse and show the categories of listings on Craigslist. Other groups (Region 2) are

more dense and show geographic regions for which there are listings. This visual layout

uses density to not only show association, but also importance.

The density of items in a display is one factor that has been shown to affect visual

search. Bertera and Rayner (2000) varied the density of randomly placed characters in a

search task. They found that search time decreased as the density of the characters

increased. In addition, they estimated that the number of items processed per fixation

increased as the density of the items increased. Mackworth (1976) showed similar results

in a study in which participants searched for a square among uniformly distributed circles

on a scrolling vertical strip. Ojanpaa, Nasanen, and Kojo (2002) studied the effect of

spacing on the visual search of word lists and found that, as the vertical spacing between

words increased (i.e. as density decreased), search time also increased.

Density has also been shown, to a lesser extent, to affect people's visual search

strategies with pictorial stimuli. Studies have found that the eyes tend to move to stimuli

that are likely to be "more informative." One definition of "more informative" in pictorial

stimuli proposed by Mackworth and Morandi (1967) is regions having greater contour.

For example, with geometric shapes, angles are considered more informative than
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straight lines. Yet, it is not readily known how to predict a priori which of two stimuli are

more informative. One plausible factor of "informativeness" is local density. It may be

that regions with a higher local density are more likely to be searched earlier since they

contain more information.

2.3.2 Link Colors

Color is another common feature used in interfaces to indicate group association. For

example, a common Web design technique is to vary hypertext link color. One

convention is to set unvisited links to blue and visited links to red. Figure 4 shows an

example of a task that benefits from differentiated link colors. The idea is that the colors

will help users to focus their search on unvisited links, increasing the efficiency of visual

search. This convention of differentiating unvisited and visited links has some support

from observational studies (Nielsen, 2007; Spool, Scanlong, Schroeder, Snyder &

DeAngelo, 1999), but lacks empirical work showing the effect of text color on people's

visual search strategies.

The effects of color on visual search is widely studied (Brawn & Snowden, 1999;

Christ, 1975; Shen, Reingold & Pomplun, 2003; Shih & Sperling, 1996; Treisman, 1998;

Zohary & Hochstein, 1989). However, the visual search literature does not directly

address the application of the above guideline. Specifically, there are few if any previous

studies of visual search of colored text.
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Figure 4. Visited links (yellow) and unvisited links (blue) for categories of children's
book at Powell's Books.
(Adapted from www.powells.com/on May 16,2008.)

Knowing the target color reduces the number of items that need to be searched and

thus reduces the time needed to find the target. Previous research has shown that color is

available early in the visual system (i.e pre-attentively) and that people can constrain

visual search to items with the most informative features (Shen, Reingold & Pomplun,

2000). Therefore, lmowing the color of the target of search has the potential to greatly

decrease search time (Treisman, 1998).
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2.3.3 Semantically Grouped Displays

In addition to being visually grouped, words in a layout can be grouped based on their

semantics; that is, words can be grouped based on relationships between the words (e.g.

synonyms, hypernyms). Categorical grouping, a type of semantic grouping, is found on

many web sites. For example, as shown in Figure 3, the popular classifieds web site

craigslist.org connects semantically related items by both proximity and visual cues, such

as the grid structure, salient labels, and regions associated with meta-groups.

Previous research has shown how group labels, akin to the word "Canada" in Figure

3, affect the selection of visual search strategies and the execution of the those strategies

(Hornof, 2004). In Hornof's research, the participants knew what the exact text of the

label and target word for which they were searching. This research found that people use

different visual search strategies based on the presence or absence of labels for groups of

words. Specifically, when group labels were present, people tended to constrain their

initial search to the labels. Perhaps more importantly, Hornof found that the execution of

these strategies were substantially different, with labels motivating a more systematic

search strategy.

Other research has shown how the semantic information in menu items affects visual

search (Brumby & Howes, 2004). Brumby and Howes found that when searching a menu

for an item described by a goal phrase not containing that word, people tend to search

fewer items (a) when distractor menu items are less similar to the goal than when when

the distractors are more similar to the goal and (b) when the target is more similar to the
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goal than when the target is less similar to the goal. In Brumby and Howes research, the

words were not hierarchically related, either visually or semantically.

The previous research has investigated the effects of hierarchical organization and the

effects of semantic similarity separately, but they have not addressed how the two

phenomena may interact. What happens when the information is hierarchically organized

into semantically related sets of words whose relationship is indicated with a meaningful

label? How is visual search guided by the semantic content of group labels, or the

grouping of the menu items? An experiment presented later in this thesis will investigate

how a semantic hierarchy and a visual hierarchy affect users' visual search strategies.

2.4 Computational Cognitive Modeling

Computational cognitive models are computer programs that simulate aspects of

people's perceptual, motor, and cognitive processes. Cognitive modeling is used in two

ways: (a) In a post hoc fashion to help explain the behavior of people performing a task.

(b) In an a priori fashion to predict how people will perform a task. This thesis reports on

research that uses cognitive modeling in the former manner, to explain people's behavior.

Building cognitive models to explain users' behavior in a post hoc fashion has a rich

history. In explanatory modeling, human data is collected and models are built to explain

the observed behavior. Such explanatory cognitive models have been used to understand

web link navigation behavior (Fu & Pirolli, 2007), driving behavior (Salvucci, 200 1b),

and time interval estimation (Taatgen, Rijn & Anderson, 2007). Explanatory models are
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useful in their own right, to expand our understanding of user behavior, but are also

useful for informing a priori predictive models. For example, the explanatory modeling

of driving behavior (Salvucci, 2001 b) was used to inform the development of a predictive

model of driver behavior while utilizing a cell phone (John, Salvucci, Centgraf, & Prevas,

2004). The models developed in this dissertation are consistent with other explanatory

modeling research in that data is collected, the models are built, and lessons learned form

the modeling are identified.

Cognitive models are often built using cognitive architectures, as is done in this

research. The cognitive architectures instantiate and integrate psychological theory of

human perceptual, cognitive, and motor processes in a framework that is used to build

cognitive models. The architecture constrains the construction of the models by enforcing

capabilities and constraints hypothesized to be similar to those of a human. Cognitive

models consist of: (a) a detailed set of if-then statements called production rules that

describe the strategy used by the simulated human to carryout a task, (b) the instantiated

theory embodied in the cognitive architecture, and (c) parameters specified that effect the

behavior of the architecture (e.g. the velocity ofa saccadic eye movement). While the

parameters can be task specific, the majority of the parameters are usually considered

fixed across a wide variety of models. Simulations using these cognitive models produce

predictions of how a person may perform the task. The results of such simulations allow

the testing of the theory instantiated in the models by comparing the performance against

those observed from humans.



31

There is a special relationship between modeling and the study of eye movements.

The movements of the eyes provide a rich set of data on which models can be built and

against which predicted eye movements of the cognitive model can be compared. In this

way, the data can provide many constraints on the construction of the models. These

include not only the reaction time, but also the number, extent, and timing of the

observed eye movements. Therefore, it is beneficial to use a modeling framework that

provides facilities for making explicit predictions of eye movements.

2.4.1 EPIC

EPIC (Executive Process-Interactive Control) is a cognitive architecture that

instantiates and integrates theory of perceptual, motor, and cognitive constraints and

benefits. Figure 5 shows the high-level architecture of EPIC (Kieras & Meyer, 1997).

EPIC provides facilities for simulating the human and the task separately. In the task

environment, a visual display, pointing device, keyboard, speakers, and microphone can

be simulated. Information from the environment enters the simulated human through

eyes, ears, and hands into corresponding visual, auditory, and tactical perceptual

processors. Information from the perceptual processors are deposited into working

memory. In the cognitive processor, information in working memory interacts with the

the cognitive strategy (instantiated in the production rules) to produce action through the

ocular, manual, and voice motor processors. The motor processors control the simulated

eyes, hands, and mouth to interact with the environment. All processors run in parallel.
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Figure 5. The high-level architecture of the EPIC cognitive architecture (Kieras & Meyer,
1997).

The perceptual and motor processors impose many constraints. Perceptual processors

determine what information in the environment are potentially available "downstream" to

the cognitive processor. Motor processors determine what information can change in the

environment that will again become available to the cognitive processor through the

perceptual processors. Particularly relevant to the research in this dissertation are the

constraints imposed by the simulated eyes, which are: (a) The retina provides more

detailed processing of information in foveal (central) vision. (b) The eyes take time to

move to gather additional information. EPIC specifies retinal availability functions for

different visual properties to simulate the limitations of the retina. For example, detailed
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information like text is only available within 1 degree of visual angle from the center of

gaze. Other information, such as color, is available at a greater eccentricity. EPIC also

simulates the eye movements, called saccades, to gather additional information. The

cognitive processor can send commands to the ocular-motor processor to initiate eye

movements which take time to prepare and execute.

The strategies used by people to perform a task are instantiated in the production

rules. Coordination of the motor processors is a primary responsibility of the strategies.

One or more tasks may require the use of one or more processors. However, motor

processors can only be controlled by one production rule at a time. For example, the eyes

cannot be told to move to two locations at the same time. The timing and coordination of

motor actions are vital constraints in EPIC.

EPIC permits multiple production rules to fire in parallel and places the serial

bottleneck at the motor and (to a lesser extent) perceptual processors. Thus, an important

aspect of modeling with EPIC is instantiating strategies that work with the constraints

imposed by the peripheral processors (e.g. the eyes).

EPIC is a C++ programming framework for the Macintosh operating system. EPIC

provides an extensive set of C++ classes that an analyst can use to build a program which

simulates a user and a computer interface with which the simulated user interacts. The

framework represents human cognitive, perceptual, and motor capabilities as discrete, but

interacting, processes encoded in object-oriented classes. The design of the framework
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lends itself to identifying where in the simulation predicted behavior originates, and thus

allows the analyst to more easily modify the framework to improve the fidelity of the

simulation.

2.4.2 EPIC and Visual Search. .

EPIC is particularly well-suited as a cognitive architecture for building models of

visual search. Perhaps most importantly for active vision, EPIC simulates eye

movements. As shown in Figure 5, the EPIC framework provides an ocular motor

processor and visual processors. Within the EPIC framework exists theory that constrains

the simulation of (a) what can be perceived in each fixation, (b) when visual features are

perceived, and (c) how visual information can be integrated across fixations.

What can be perceived at any given moment is most constrained by EPIC's retinal

availability functions. The availability functions simulate the varying resolution of the

retina, with greater resolution near the center of vision and lower resolution in the

periphery. The retinal availability functions determine the eccentricity at which visual

properties can be perceived. For example, text is available within one degree of visual

angle from the center of fixation, roughly corresponding to foveal vision, whereas color

is available within seven and a half degrees of visual angle.

When visual features are perceived, relative to the timing of an object's appearance, is

constrained by simulated delays in EPIC's perceptual processors, namely sensory

transduction time and perceptual recoding time. The encoding of visual objects and their
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properties into visual working memory takes time. Ifa visual property is available

according to the availability function (described above), that information travels through

the visual sensory processor and the visual perceptual processor, each of which induces a

delay, before being deposited into visual working memory.

What gets integrated between fixations is a factor of memory decay time and the

production rules. The perceptual parameters affect how information can be integrated

between fixations as follows: When the eyes move away from an object, one or more

visual properties may no longer be available. How far the eyes must move is determined

by the properties' retinal availability function. When the retinal availability function

determine that a feature is no longer available, the visual feature decays from sensory

memory and then from visual working memory. Production rules can extend the "life" of

visual features and object identity by creating a "tag" memory item before an object

decays from visual working memory. However, copying memory items must be explicitly

programmed into the production rules, usually based on task dependent criteria.

Where the eyes move is determined by the visual search strategies encoded in the

production rules and the contents of working memory. The production rules explicitly

state under which circumstances the eyes are moved. When the contents of working

memory satisfy a production rule that moves the eyes, a motor movement command is

sent to the ocular motor processor, which then initiates an eye movement to the object

specified by the production rule.
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All told, EPIC is very well-suited as a framework for simulating active vision in the

context ofHCI tasks. EPIC provides theory of visual-perceptual and ocular-motor

processing that are useful for guiding the development of models of visual search in tasks

that motivate eye movements.

2.5 Summary

The goal of this dissertation is to build a computational model of visual search that

explains a variety of eye movement behavior in HCI tasks. Towards that goal, this

dissertation draws on visual search literature, specifically literature related to active

vision and previous models of visual search.

An active vision approach is adopted in this research to investigate people's visual

search behaviors. Active vision is the notion that eye movements and the physical

constraints imposed by the eyes must be considered when investigating visual processes.

Issues central to the notion of active vision include when and where the eyes move, what

is perceived, and how the information perceived is used over time. This dissertation will

explore these issues through cognitive modeling.

Computational cognitive modeling is a useful method for understanding how people

perform tasks, and EPIC is a cognitive architecture in which models especially well­

suited to an active vision approach can be built. EPIC is a cognitive architecture, a

software framework for building cognitive models, that instantiates constraints on the
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availability and timing of visual information through the simulation of human ocular

motor activity and visual perceptual processes.

Now that the theoretical framework and background is in place, the next chapter will

present the specific visual search ex;periments conducted as p~ of this dissertation wor~

to provide the detailed reaction time and eye movement data needed to guide the

development of the models of active vision.



38

CHAPTER III

EXPERIMENTS

Three experiments were conducted to (a) provide insight into how people visually

search computer interfaces and (b) inform the building of computational cognitive

models of such tasks. This chapter describes the experiments conducted for this

dissertation, the analysis of eye movements recorded from these experiments, and the

implications of these experiments for human-computer interaction.

One focus of this research is to understand how the physical arrangement of visual

objects affects visual search. Figures 1 and 2 show examples oflayouts with physical

arrangements that will affect search. In these layouts: (a) the majority of the content are

single words or short phrases, (b) the layouts are organized in a grid-like fashion, and (c)

the visual properties of the objects that appear in the layout vary. The experiments

reported in this dissertation are derived from real-world layouts such as those shown in

Figures 1 and 2, but scaled down to provide more experimental control.

Each experiment investigated how a specific design decision affects users' visual

search processes as revealed by reaction time and eye movements. The first experiment,

mixed density displays, investigated the effects of varying the visual density of elements

in a structured layout. The second experiment, link colors, investigated how
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differentiating potential targets from non-targets using color (as is done with web page

links) affects visual search. The third experiment, semantically grouped displays,

investigated how both semantic and visual grouping affect people's active vision.

3.1 Mixed Density Displays

An aim of this research is to ultimately predict how people visually search real-world

interfaces. The density of content within interfaces, from the world wide web to printed

brochures, varies substantially. This experiment is designed to explore how issues of

density, discussed in Chapter I and researched by previous authors, should be

incorporated into a general purpose, comprehensive, active vision model of visual search

for HCr.

Density may be measured as either overall density or local density. Overall density is

the number of items per unit of screen space over an entire layout. Local density is the

number of items per unit of screen space within a visually distinct group. The first

experiment was conducted to determine how varying local density in a layout affects

visual search. Specifically, the effects of mixing of two local densities were investigated.

Groups of words of two different densities, which will be referred to as sparse groups and

dense groups, were presented alone or together.

It was hypothesized that search time per word would be greater in sparse layouts and

that people search dense regions before sparse. As discussed in Chapter II, previous

research has shown that densely packed shapes are visually searched faster than sparsely
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packed shapes. The initial assumption is that this will hold for words as well.

Additionally, if people do visually search dense groups of words faster and they are

motivated to find the target as quickly as possible while making as few errors as possible,

then it is assumed that people will search dense regions first since this would result in

finding the target faster on average. These two hypotheses are tested in the following

experiment.

3.1.1 Method

This experiment investigated the effect of local density on the visual search of

structured layouts. The remainder of this section discusses an experiment that investigates

the effects of local density on users' visual interaction. The task is described and the

results of an experiment are discussed.

3.1.1.1 Participants

Twenty-four people, 10 female and 14 male, ranging in age from 18 to 55 years of

age (M = 24.5, SD = 7.9) from the University of Oregon and surrounding communities

participated in the experiment. The participants were screened as follows: 18 years of age

and older; a native English speaker; experienced using a computer; no learning disability;

normal use of both hands; and normal or corrected-to-normal vision.

The participants' visual acuity, color vision, and stereo vision were verified. Visual

acuity was verified using a Runge Near Point Card. The experimenter ensured that the

participants had 20/20 vision. The print size of letters on the acuity chart which the



41

participants were required to read were substantially smaller than the text they would

later be required to read during the experiment. Normal color vision was verified using

the H-R-R Pseudoisochromatic Plates, 3rd Edition. Normal stereo vision was verified

using the Stereo Butterfly and Random Dot Test. All eye exam materials were acquired

from Richmond Products in Albuquerque, New Mexico.

Participants were financially motivated to perform with high speed and accuracy. The

participants were instructed that they should complete each trial quickly while making

few errors. Participants were paid $10, plus a bonus that ranged from $0 to $4.54 based

on their performance. Speed and accuracy were motivated as follows: The participant was

initially given 7¢ to 16¢ for each trial, depending on the complexity of the screen. They

lost 1¢ for each second after the trial started until they clicked on the target. If the

participant clicked on something besides the target or if they moved the mouse before

they found the target, the participant lost all ofthe money for that trial plus 5¢. The

rewards and penalties were explained to the participants to motivate speed and accuracy.

3.1.1.2 Apparatus

Visual stimuli were presented on a ViewSonic VE170 LCD display set to 1280 width

by 1024 height resolution at a distance of 61 ern, which resulted in 40 pixels per degree

of visual angle. The experimental software ran on a 733 MHz Apple Power Macintosh 04

running OS X 10.2.6. The mouse was an Apple optical Pro Mouse, and the mouse

tracking speed was set to the fourth highest in the mouse control panel. The visual stimuli

were presented with custom software designed using the C++ programming language,
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Metrowerk's PowerPlant framework, and Metrowerk's Codewarrior development

environment. The software was developed by the author as part of this dissertation work.

3.1.1.3 Eye Tracking

Since we are concerned with understanding visual search processes, the most directly

observable and measurable events of interest are the eye movements of the experimental

participants. Therefore, eye movements were recorded using an single-camera LC

Technologies Eyegaze System, a 60 Hz pupil-center and corneal-reflection eye tracker. A

chinrest was used to maintain a consistent eye-to-screen distance of 61 em.

Eye trackers allow us to directly observe and record people's point of gaze. The

participants pupil center and corneal reflection (the point on the eye closest to the

camera) are monitored using infrared cameras and specialized video processing software.

The vector between the pupil center and the corneal reflection are used to determine

where the participant is looking.

3.1.1. 3.1 Eye Movement Analysis The analysis and interpretation of eye movements

can be challenging. There is an abundance of data, the data can be difficult to segment,

and it's not always clear how to best use the data to answer the research questions. To

address these issues: (a) Custom software was designed for studying eye data. (b) A well

defined subset of the data was identified for analysis.

An extensible application, VizFix, was developed by the author to allow custom

analysis of eye movement data as part of the work for this dissertation. The core of
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VizFix provides a basic facilities to store, segment, and analyze eye movement data.

Perhaps more importantly, VizFix is extendable through plugins that can read different

data formats and provide additional, custom analysis for the identification of fixations

and the counting, duration, and ordering of those fixations.

The first step in eye movement analysis is to identify meaningful physiological

phenomena, fixations for this research, from the stream of gaze position samples

provided by the eye tracker. In all analyses presented in this dissertation, fixations are

identified using a dispersion-based algorithm (Salvucci & Goldberg, 2000). This

algorithm was implemented in VizFix. The dispersion-based algorithm identifies

fixations based on temporal and spatial relations between the gaze position samples

provided by the eye tracker. In this dissertation, fixations are defined as a series of

samples with locations within a 0.5 0 of visual angle radius of each other for a minimum

of 100 ms. To accommodate noise in the eye tracker, this implementation of the

dispersion-based algorithm assumes that a fixation continues if one sample occurs outside

of the 0.5 0 radius as long the next sample occurs within that threshold.

Another important step early in the analysis process is to consider the best way to

study the fixation data. Both temporal and spatial segmentation of the fixation data is

required. Temporal segmentation includes choosing the right subset of fixations to

analyze. Depending on the questions to be answered, different constraints must be placed

on the selection of data to be analyzed. The spatial segmentation of fixations includes
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choosing the correct regions ofinterest for each analysis. Region of interest is a phrase

commonly used in eye tracking analysis to denote (a) the locations in the visual display

that are meaningful for the analysis and (b) the spatial scale at which the analysis will be

conducted. For example, the regions of interest may be either individual words or groups

of words (spatial scale) and mayor may not include the whitespace surrounding the

words (meaningful locations). The following are temporal and spatial constraints used in

VizFix for the analysis of the eye movement data from the experiments presented in this

research:

• The eye movement data analysis is limited to include gaze position samples

starting from the first fixation that began after the user had initiated the visual

search task and ending with the first fixation that stopped before the participant

moved the mouse to click on the target of visual search. That is, only fixations

that started after visual search started and fixations that ended before selection

started are included in analyses. This constraint was imposed because the fixation

that is ongoing when a layout appears may have been used to (a) process the

visual stimuli present before the layout appears and (b) guide manual movements

to initiate the next visual search task.

• When assigning fixations to regions of interest, a region is considered visited if

one or more contiguous fixations fall within I degree of visual angle of the

region. A region is considered revisited if that region has been previously visited.



45

• Unless otherwise stated, revisits are not included in the analyses because it is

assumed that the participants' visual search behavior may differ within groups

already visited. That is, if a person has previously fixated a group of items,

decisions about that group of items may have already been made and may be

recalled.

• The final region visited during visual search is not included in analyses because it

is assumed that the participants' behavior will differ when a target is found. For

example, the target will be fixated longer or more frequently than other items

because the cursor must be moved to the target and the target clicked.

3.1.1.3.2 Eye Tracker Calibration Eye trackers need to be calibrated to each user in

order to record accurate gaze position data. Adjusting for the unique characteristics of

each users' eyes requires the user to look at several points on the screen on which the

stimuli will be presented.

The need for calibrations and recalibrations can be a limiting factor in using an eye

tracker for data collection. Too many calibrations can interrupt participants' task

execution. A solution, implemented for the first time by the authors as part of this

dissertation work, is the use of the required fixation location (RFL) technique (Homof &

Halverson, 2002).
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The RFL technique provides an objective measure of eye tracker accuracy and can

potentially reduce the number of calibrations required. An RFL is a location that the

participant must fixate during the execution of the task in order to accomplish the task

(e.g. clicking on a target). If the measured gaze location deviates too far from the RFL, a

calibration is automatically initiated at the next appropriate time (e.g. between trials).

Other means of verifying eye tracker accuracy tend to be less reliable or more

disruptive. The alternatives to using the RFL are: (a) Only a single initial calibration. This

is problematic because the calibration can deteriorate over time, resulting in less reliable

data. (b) Use the experimenter's subjective evaluation. While the experimenter can

usually monitor the eye movements recorded by an eye tracker, it can be very difficult to

consistently determine when the eye tracker's accuracy becomes problematic. Such

subjective measures can result in unreliable data or unnecessary interruptions to

recalibrate during the experiment. (c) Regular interruptions to recalibrate. The

experimenter can interrupt the experiment at regular intervals (e.g. at the end of each

block of trials) to recalibrate the eye tracker regardless of whether it is truly necessary. Of

the three alternatives, this is the most desirable. However, this is an uninformed decision

and can result in too few or too many recalibrations.

3.1.1.3 Stimuli

Figure 6 shows a sample layout from a mixed density display. Layouts always

contained six groups of left-justified, vertically-listed black words (RGB values of 0, 0,

0) on a white background (RGB values of255, 255, 255). Groups were sets of words
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surrounded by white space that was equal to or greater than the distance between the

centers of the words in the group. The groups were arranged in three columns and two

rows. Columns were 7.5 degrees of visual angle from left edge to left edge. Rows were

separated by 0.65 degrees of visual angle.

There were two types of groups, each with a different local density. Sparse groups

contained five words of 18 point Helvetica font with 0.65 degrees of vertical angle

between the centers of adjacent words (0.45° for word height, and 0.2° for blank space).

Dense groups contained 10 words of 9 point Helvetica font with 0.33 degrees of vertical

angle between the centers of adjacent words (0.23° for word height, and 0.1 ° for blank

space). Both types of groups subtended the same vertical visual angle.

There were three types of layouts: sparse, dense, and mixed-density. Figure 6 shows

an example of a mixed-density layout. Figure 7 shows examples of sparse and dense

layouts. Sparse layouts contained six sparse groups. Dense layouts contained six dense

groups. Mixed-density layouts contained three sparse groups and three dense groups. The

arrangement of the group densities in the mixed-density layouts was randomly

determined for each trial. Sparse and dense layouts were identical to the mixed-density

layout, with the exception of group densities.

One concern with the experimental design may be that font size and word spacing are

conflated. In other words, how can the effects of density be evaluated when both factors

are varied? This experiment was designed in part to determine the effect of combining
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Figure 7. A sparse layout (top) and dense layout (bottom).

multiple local densities in a single layout. Local density was purposefully manipulated by

covarying font size and word spacing. Text size often covaries with local density in real-

world tasks, as is seen in the example from the Craigslist web page in Figure 3. Varying

just text size or spacing may have removed the effect of visually distinct groups. The

number of words per group was varied with local density to keep the height of groups
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similar so that the visual salience of dense and sparse groups were approximately

equivalent.

The words used in each trial were randomly selected from a list of765 nouns

generated from the MRC Psycholinguistic Database (Wilson, 1988). No. word appeared

more than once per trial. The words from the database were constrained as follows: three

to eight letters, two to four phonemes, above-average printed familiarity, and above­

average imagability. Five names of colors and thirteen emotionally charged words were

removed. The words used are shown in Appendix A.

The target word was randomly chosen from the list of words used in each trial. The

participant was precued with the target word before each layout appeared. The precue

appeared at the same location every time, directly above the top left word in the layout, in

uppercase, 14 point Geneva font - a different font than in the layouts to reduce the effects

of visual priming.

3.1.1.4 Procedure

The procedure was as follows. Each participant signed an informed consent form, filled

out a demographics questionnaire, received a vision exam, and received instructions for

the experiment. The participants were told that they would complete many trials and that

each would proceed as follows: The participant should study the precue; click on the

precue to make it disappear and the layout appear; find the target word without moving

the mouse cursor; and then move the cursor to click on the target.
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The participants were financially motivated to not move the mouse cursor until they had

found the target. This was done to separate the visual search time from the cursor

pointing and clicking time. The point-completion deadline procedure (Homof, 2001)

enforced compliance. Participants practiced meeting the point completion deadline prior

to the experiment.

At the start of each experiment, the eye tracker was calibrated to the user. The

calibration procedure required the participant to fixate a series of nine points until the

average error between the predicted point of gaze and the actual location of the points fell

below an error threshold (approximately 0.6 degrees of visual angle). Accurate eye

tracking calibration was maintained using the automated required fixation locations

(RFL) procedure (Homof & Halverson, 2002) discussed earlier. If the eye tracker did not

detect the user's gaze on the precue before the precue was clicked and yet the participant

nonetheless selected the correct target, the eye tracker was recalibrated before the

following trial.

The trials were blocked by layout type. Each block contained 30 trials, preceded by

five practice trials. The blocks were fully counterbalanced. Trials were marked as errors if

whitespace or a word besides the target was clicked on, the point completion deadline

was not met, or the eye tracker was out ofcalibration for the trial. Only correct trials are

analyzed.
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3.1.2 Results

Search time began when the participant clicked on the precue and ended when the

participant started moving the mouse. Eye movement data included in the analyses

started from the fIrst fIxation (that started) after the precue was clicked and ended with

the fIrst fIxation (that ended) before the mouse started moving.

The mean search time and eye movement measures for each of the twenty-four

participants were analyzed using repeated-measure ANOVAs. An alpha level of .05 was

used for all statistical tests. The analyses focused on the experimental manipulation of

layout density.

3.1.2.1 Error Rates

Three types of errors were recorded: (a) The participant did not click on the target; (b)

the participant moved the mouse before the target was found (i.e. violation of the point

completion deadline); (c) the eye tracker calibration was off. As shown in Figure 8, the

participants' error rates were low, less than 5 percent, in all conditions. More errors

occurred in the high density layouts. An increase in errors was expected in the dense

layouts where all of the targets are small. Smaller targets were harder to click on,

resulting in more occasions in which the participants would likely click on a nearby target

or require more time to click (thus risking a violation of the point-completion deadline).

The errors were still relatively low, indicating that the participants were motivated to

perform accurately. Further, as will be seen in the next section, visual search took longer
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Figure 8. Percentage of trials in which human errors occurred in the mixed-density task,
grouped by layout type and error type. Error rates were consistently low. More errors
occurred in the dense layouts, which also required more visual search time, suggesting
that participants were not trading speed for accuracy.

in the high density conditions. Lower error rates in conditions with faster search times

suggest that the participants were not trading speed for accuracy.

Figures 8 also shows that the eye tracker calibration had to be corrected infrequently.

The eye tracker had to be recalibrated a total of 25 times, which is less than one

calibration per block. This indicates that the participants gaze was reliably detected where

it was expected and hence the eye tracking data is reliable.
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3.1.2.2 Search Time

As shown in Table 1, participants searched layouts that had fewer dense groups faster

than layouts that had more dense groups, F(2, 46) = 127.80, p < .01. Since dense groups

contained more words, the following analyses were conducted after normalizing for the

number of words per layout. This was accomplished by dividing the search time per trial

by half of the number of words in the layout. This normalization assumes that

participants searched half of the words on average. Participants spent less time per word

in layouts with fewer dense groups, F(2, 46) = 13.94,p < .01. More specifically, the

participants spent less time per word in sparse layouts compared to mixed layouts, HSD =

23.68,p < .01; and less time per word in sparse layouts compared to dense layouts, HSD

= 27.91,p < .01; but there was no meaningful difference between the time spent

searching per word in the mixed and dense layouts, HSD = 4.24,p = .46.

The search time was also analyzed as a function of layout uniformity (single density

vs. mixed density) and target group density. Figure 9 shows the results. Locating a target

in a dense group took longer than in a sparse group, F(1, 23) = 83.87,p < .01. The mean

search time for all-sparse and all-dense was no different than the mean search time for

mixed-density layouts, F(1, 23) = 1.03,p = .32. However, there was an interaction

between layout uniformity and target group density, F(1, 23) = 16.87,p < .01. In other

words, when the target was in a sparse group, participants found the target faster in all­

sparse layouts than in mixed layouts; when the target was in a dense group, participants

found the target faster in mixed-density layouts than in all-dense layouts. Furthermore, in



Table 1. Search time per trial and per word, fixations per word, and fixation duration for sparse, mixed-density, and dense
layouts. The "per word" measures are normalized based on the number of words in the layout.

Search Time per Trial (ms) Search Time per Word (ms) Fixations per Word Fixation Duration (ms)

Layout Mean SD Mean SD Mean SD Mean SD

-
Sparse 3125 665 108 49 0.7 0.2 250 22

Mixed 5753 1493 253 62 0.7 0.1 307 49

Dense 7925 1891 265 55 0.6 0.1 370 68

n=24

Vl
Vl
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# Words in Layout: 30 45 45 60

Figure 9. Search time by layout type and the density of the group in which the target
appeared. Error bars indicate ±1 standard error of participants means.

mixed density layouts, participants found the target faster when it was in a sparse group,

F(1, 23) = 30.36,p < .01.

3.1.2.3 Eye Movements

As shown in Table 1, participants made slightly fewer fixations per word in layouts

with more dense groups, F(2, 46) = 3.25,p = .05. The participants used fewer fixations

per word in the dense layouts than in the mixed layouts, F(1, 23) = 8A2,p = .01.

The fixation durations were much longer in layouts with more dense groups, F(2, 46)

= 61.82,p < .01. The participants made longer fixations in the dense layouts than in the
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mixed layouts, F(l, 23) = 36.01,p < .01, and longer fixations in mixed layouts than in the

sparse layouts, F(l, 23) = 38.11,p < .01.

As shown in Figure 10, participants tended to visit sparse groups before dense groups,

Z2(5, N = 24) = 500.04,p < .01. A group was ''\:isited'' if one or more con~iguous

fixations fell within 1 degree of visual angle ofthe group (group revisits were not

included). Differences in the number of group visits in the mixed density layouts were

tested by comparing the percentage of visits to sparse or dense groups for the first

through sixth group visit.

80

0--&000-

D Sparse

III Dense

1st 2nd 3rd 4th 5th 6th
Order of Group Visit

Figure 10. The percentage of group visits in the mixed density layouts that were to sparse
or dense groups, as a function of the order in which the group was visited. Sparse groups
were more likely to be visited first.
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Participants revisited more groups per trial in layouts with more dense groups, F(2,

46) = 10.50,p < .01. Fewer revisits were made in sparse layouts than mixed layouts, F(l,

23) = 12.82,p < .01. Although there were fewer revisits per trial in mixed layouts than in

dense layouts, the difference was not significant, F(l, 23) = 2.31,p = .14.

Figure 11 shows the number of fixations per group as a function of density uniformity

(all groups of the same density or not), density of the group visited, and the order of

group visit. There were no meaningful difference in the number of fixations per group

between the uniform-density layouts and mixed-density layouts, F(l, 9) = 2.69,p = .14.

-

-

1st 2nd 3rd 4th 5th 6th
Group Visit Order

Figure 11. The mean number of fixations per group as a function of density uniformity,
the density of the group visited, and order of the group visit. Error bars indicate ± 1
standard error of participant means.
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Participants used more fixations per group in dense groups than in sparse groups, F(l, 9)

= 112.30,p < .01. Participants used more fixations per group as search progressed, F(5,

45) = 8.14,p < .01. All interactions were also significant. All of the interactions can be

summarized by the three-way interaction of uniformity, target group density, and the

order of group visit, F(5, 45) = 4.52,p < .01. The number of fixations per group increased

as search progressed, but much more so for the number of fixations in dense groups in the

mixed-density layouts. This interaction is illustrated in Figure 11 by the steeper slope of

the black, dashed line.

Figure 12 shows the fixation durations as function of density uniformity, target group

density, and the order of group visit. Fixation durations were longer in dense groups than

in sparse groups, F(l, 9) = 139.36,p < .01. Fixation durations tended to be longer for

groups visited later than for groups visited earlier, F(5, 45) = 4.89,p < .01. However,

none of the interactions were statistically significant, even though trends similar to those

found in the fixations per group analysis can be seen in Figure 12.

3.1.3 Discussion

This study investigates the effects of layout density and variation in density. This

experiment reveals active vision strategies people use to search layouts with different

densities, as is common in computer interfaces. These results will be used in the

following chapter to help guide the development of a computational model of active

vision for HeI.
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Figure 12. The mean fixation duration as a function of density uniformity, the density of
the group visited, and order of the group visit. Error bars indicate ± 1 standard error.

The most interesting results were found in the mixed-density condition. It was shown

that the targets in sparse groups were found faster than the targets in dense groups, at

least in part due to sparse groups being searched earlier.

The results suggest that people tend to search sparse groups first and faster (even

when search times are normalized for word count). The search time data reported here

demonstrate that people spent less time per word searching sparse layouts. It appears that

participants were able to adopt a more efficient eye movement strategy that used slightly

more and shorter fixations.
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The finding that sparse groups are searched faster is contrary to search time results

from some previous research. This result is contrary to the search time results found by

Bertera and Rayner (2000) and OjanpiUi, et al. (2002) in which the search time per item

decreased as the density increased. This discrepancy may relate to the way in which

density is manipulated. In the previous studies, the spacing between items was varied,

and in the current study, the size of items (i.e. font size) was varied. It may be that

although various factors affect local density, they do not all affect visual search of those

densities in the same way.

Targets in sparse groups were found faster in part because sparse groups were

searched first. People preferred to search sparse groups first. This is not what we

expected. We expected dense groups to be searched first, as dense groups contained more

information. Targets were found faster in the sparse group of mixed-density layouts, as

shown in Figure 9, and the eye movement data also show that the participants tended to

look at the sparse groups first. As is seen in Figure lO, it was much more likely for

participants to look at sparse groups than dense groups within the first four groups

visited. Note that while the first group visited was often a dense group, this is because

89% of all initial fixations were to the top-left group in the layout, and this group was

equally likely to be either sparse or dense.

The findings that sparse groups tend to be searched first and faster supports the design

practice of using sparse groups of text to attract users' attention to more important
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information. Information essential for the primary goals should be placed in groups that

are sparse relative the other information in the layout so that they are more likely to be

found faster. It is shown that sparse groups of words are searched faster and, when

presented with dense groups, sparse groups are searched earlier than dense groups. This

lends support to the practice of following the typographic conventions of displaying

important information such as headlines with larger, more visually salient text.

A good, comprehensive cognitive model must include strategies, and useful analyses

will identify these strategies. The data from this experiment provide evidence of such

strategies. There was evidence of a shift in participants' search strategy when searching

the mixed density layouts. This shift can be seen in Figures 11 and 12 in the darker

dashed line that jumps up between the third and fourth group visit. After half of the

groups in the layout had been visited, the participants tended to use more and longer

fixations to search the dense groups. This transition occurred right around the time that it

became more likely for the participants to search the dense groups.

This observed strategy shift suggests that care should be taken when combining

densities in a visual layout. If people regularly adopt strategies that are more optimal for

sparse text and use these same strategies when searching dense text, this may increase the

likelihood of information being missed in dense groups. In general, fewer and shorter

fixations are less likely to find a target. The next study examines another common visual

characteristic of text in visual interfaces - the color of the text.
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3.2 Link Colors

The second experiment, on link colors, is designed to reveal people's visual search

strategies and provide general guidance for building computational cognitive models of

human-computer visual interaction, specifically for tasks involving colored text. This

experiment explores how issues of color, discussed in Chapter II and researched by

previous authors, affect active vision in HCI tasks. The experiment investigates how

varying the number of items of the same color as the target affects visual search when

there are items of a different color present or not. In other words, this study investigates

the visual search of structured layouts where only a subset of text, based on the color of

text, need be searched. The web design practice of trying to assist visual search by

differentiating visited and unvisited links based on color is investigated by varying the

ratio of blue and red words, and by including layouts in which red words were replaced

by blank space. The target word is always blue. It is hypothesized that search time would

increase with the number of blue words and search would be faster with the red words

absent.

3.2.1 Method

3.2.1.1 Participants

Twenty-four people, 11 female and 13 male, ranging in age from 19 to 55 years of age

(mean = 25.1, SD = 7.9) from the University of Oregon and surrounding communities

participated in the experiment. Twenty-two of these participants also took part in the

mixed density experiment described above. The same screening criteria were applied.
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Participants were monetarily motivated to participate in this study, and to perform

with high speed and accuracy. The participants were instructed that they should complete

each trial quickly while making few errors. Participants were paid $10, plus a bonus that

ranged from $2.53 to $9.20 based on their performance. Speed and accuracy were

motivated as follows: The participant was initially given 4¢ to 7¢ for each trial,

depending on the complexity of the screen. They lost 1¢ for each second after the trial

started until they clicked on the target. If the participant clicked on something besides the

target or if they moved the mouse before they found the target, the participant lost all of

the money for that trial plus 5¢. The rewards and penalties were explained to the

participants to motivate speed and accuracy.

3.2.1.2 Apparatus

The same stimuli presentation and eye tracking computers were used as described

above for the mixed density experiment. The visual stimuli were presented with custom

software designed using the C++ programming language, Metrowerk's PowerPlant

framework, and Metrowerk's Codewarrior development environment. The software was

developed by the authors as part of this dissertation work.

3.2.1.3 Stimuli

Figure 13 shows a sample layout. All layouts utilized the same 30 locations for the

text stimuli. These locations were divided into six groups ofleft-justified, vertically-listed

words words. The groups surrounded by white space that was equal to or greater than the

distance between the centers of the words in the group. The groups were arranged in three
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Figure 13. A sample layout from the text color experiment with ten target-colored (blue)
words and twenty non-target-colored (red) words. All angle measurements are in degrees
of visual angle.

columns and two rows. Columns were 7.5 degrees of visual angle from left edge to left

edge. Rows were separated by 0.65 degrees of visual angle. Each group contained five

locations for the text stimuli with 0.65 degrees of vertical angle between the centers of

adjacent locations (0.45° for word height, and 0.2° for blank space).

The text in the layouts was always the same size and font, but the color of the text

could vary. The text was 18 point Helvetica font. The text could either be blue (ROB

values of 0, 0, 67) or red (ROB values of 67,0,0). The words appeared on a white

background (ROB values of 0, 0, 0).

There were seven types of layouts: One layout contained thirty blue words, two

layouts contained twenty blue words, two layouts contained ten blue words, and two
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layouts contained one blue word. In each pair of layouts with the same number of blue

words, non-blue positions were either filled with red words as shown in Figure 13, or left

blank as shown in Figure 14. The mixed-color layouts were always filled for a total of 30

words. Because the target was always blue, red words could be distinguished as non-

targets based on their color alone.

The words used in each trial were randomly selected from a list of 765 nouns

generated from the MRC Psycholinguistic Database (Wilson, 1988). No word appeared

more than once per trial. The words from the database were constrained as follows: three

to eight letters, two to four phonemes, above-average printed familiarity, and above-

average imagability. Five names of colors and thirteen emotionally charged words were

removed. The words used are shown in Appendix A.

SOFT

rain

name

snail
-r

0.650

---.L

------- 7.5 0
-------

gown

sn w ---.­
065 0

bush --l...-

·to It

soft

roll

square

Figure 14. This layout is equivalent to that shown in Figure 13, except that the red words

have been replaced with blanks.



----------- -------

67

The target word was randomly chosen from the list of words used in each trial. The

participant was precued with the target word before each layout appeared. The precue

appeared at the same location every time, directly above the top left word in the layout, in

black (RGB values of 0, 0, 0), all upper case, 14 point Geneva font - a different font than

in the layouts to reduce the effects of visual priming.

3.2.1. 4 Procedure

The procedure for this experiment was identical to the Local Density experiment

procedure described in section 3.1.1.4. In short, the precue appeared, the participant

clicked on the precue, searched the layout and clicked on the precue. For participants that

took part in this and the mixed density experiment during the same session, the order of

presentation for the experiments were counterbalanced.

3.2.2 Results

Search time began when the participant clicked on the precue and ended when the

participant started moving the mouse. Eye movements were recorded from the time

participants clicked on the precue to when they clicked on the target. The mean search

time and eye movement measures for each of the twenty-four participants were analyzed

using repeated-measure ANOVAs. An alpha level of .05 was used for all statistical tests.

3.2.2.1 Error Rates

Three types of errors were recorded: (a) The participant did not click on the target. (b)

The participant moved the mouse before the target was found (i.e. violation of the point

completion deadline). (c) The eye tracker calibration was off. As shown in Figures 15 and
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4---------------------r--II Target not clicked
~ Point completion deadline
D Calibration off

No Yes
Red Distractors Present

Figure 15. The percentage of errors in the Text Color experiment when the red distractors
were present or not.

16, the participants' error rates were low -less than 4 percent - in all conditions. The

percentage of point-completion errors tended to increase with the number of blue words

in the layout. This may be because with more potential targets in the layouts, the

participants were more likely to mistake another word for the target and start moving the

cursor towards such a word. However, as will be seen in the next section, visual search

time also increased as the number of blue words increases. Lower error rates in

conditions with lower search times demonstrated that the participants were not trading

speed for accuracy.
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4--r=1I~-------------__
Target not clicked

-~ Point completion deadline

D Calibration off

o
1 10 20

Number of Blue Words
30

Figure 16. The percentage of errors in the Text Color experiment with 1, 10,20, or 30
blue words present.

Figures 15 and 16 also show that the eye tracker calibration had to be corrected

occasionally, in roughly 0.3% of the trials, but this is not inordinately high. This auto-

recalibration was triggered a total of 25 times, on average less than one time per block.

This suggests that the eye tracking data is reliable; the participants gaze was reliably

detected where it was expected.

3.2.2.2 Search Time

As can be seen in Figure 17 and Table 2, participants found the target faster in layouts

with fewer blue words, F(3, 21) = 378.80,p < .01, and when red distractors were absent,
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O---.....,.------r----...,....----..,......-....--
1 10 20

Number of Blue Words
30

Figure 17. The mean search time per trial in the Text Color experiment as a function of
the number of blue words and the presence of red words in the layout. Error bars indicate
± 1 standard error.

F(1, 23) = 32.01,p < .01. There is an interaction between the number of blue distractors

and the presence of red distractors, F(3, 21) = 23.06,p < .01. In other words, the presence

of red words slowed search more when more were present.

Since layouts without red distractors contained more words, analyses were also

performed after normalizing for the number of blue words per layout. This was

accomplished by dividing the search time per trial by half of the number of words in the

layout. This normalization assumes that participants searched half of the words on

average.



Table 2. Mean search time per trial and per blue word, mean fixations per trial and per blue word, and mean fixation

duration for all conditions in the Link Color experiment.

Search Time per Search Time per Fixations per Fixations per Fixation
Trial (ms) Blue Word (ms) Trial Blue Word Duration (ms)

Number of Has Red
Blue Words Distractors? Mean SD Mean SD Mean SD Mean SD Mean SD

1 No 289 46 289 46 1.7 0.2 1.7 0.2 132 42

Yes 393 69 393 69 2.2 0.3 2.2 0.3 151 36

10 No 1387 187 139 19 5.4 0.6 0.5 0.1 200 20

10 Yes 1657 329 166 33 6.1 0.9 0.6 0.1 211 21

20 No 2191 273 110 14 7.7 1.1 0.4 0.1 238 26

20 Yes 2488 457 124 23 8.4 1.5 0.4 0.1 238 26

30 No 3005 544 100 18 9.9 2.0 0.3 0.1 255 23

n=24

-.J--



72

As shown in Table 2, participants spent less time searching as afunction ofthe

number ofblue words present in layouts with more blue words, F(3, 21) = 187.48,p <.

01, and when the red distractors were absent, F(1, 23) = 68.60,p < .01. Moreover, there is

an interaction between the number of blue distractors and the presence of red distractors,

F(3, 21) = 23.06,p < .001. Again, it is seen that the presence of red words slowed the

search more when there were more red words present, but this time after normalizing for

the number of blue words.

3.2.2.3 Eye Movements

As shown in Figure 18 and Table 2, all the main effects and interactions found with

search time also appear in the number of fixation data. Participants made more fixations

in layouts with more blue words, F(3, 21) = 379,p < .01. Participants also made more

fixations when red words were present, F(1, 23) = 33,p < .01. Further, the effect of red

words was greater when more red words were present, F(3, 21) = 20,p < .01.

Fixation durations were also analyzed. It was found that, if we account for things like

the pop-out effect by removing the layouts in which only one blue word appeared,

fixation durations are equivalent across all layouts (all p > .05).

Saccade distances and destinations were analyzed. All saccades were more likely to

land on a blue word than a red word. Short saccades were more likely than long saccades

to land on a blue word rather than a red word. The analysis was done for mixed color

layouts as follows: Short saccades were defined as those under 7.5 degrees of visual
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Figure 18. The mean number of fixations per trial in the Text Color experiment as a
function of the number of blue words and the presence of red (or non-target-colored)
distractors. Error bars indicate ±1 standard error.

angle (which is the distance between two columns of words). All other saccades were

classified as long. Most saccades were short, F(l, 23) = 958,p < .01. Most saccades were

to blue words, F(l, 23) = 538,p < .01. Additionally, an interaction of word color and

saccade distance shows that the participants were more likely to saccade to a blue word

when the saccade was short than when the saccade was long, F(l, 23) = 359,p < .01.

Nonetheless, most long saccades were to blue words, F(l, 23) = 14,p < .01.
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3.2.3 Discussion

This study investigates the degree to which color can be used to guide users' visual

search strategies. Participants were presented with visual layouts with a varying number

of blue words that they needed to search to find the target. Sometimes the remainder of

the layout was filled with red words and sometimes those locations were empty. If people

can focus on just the relevant stimuli, based on color, then we would expect equivalent

behavior with the red distractors or identically-placed blank spaces.

These findings, for the most part, agree with previous work that suggests that people

can ignore task irrelevant stimuli based on color (Poisson & Wilkinson, 1992; Shen,

Reingold & Pomplun, 2003; Zohary & Hochstein, 1989). Additionally, this work extends

the previous research by using more complex stimuli. Previous research used colored

shapes and the like, whereas the current research used colored text.

However, it was also found that the task-irrelevant stimuli (the red words) slowed

visual search, even though irrelevant stimuli can in theory be pre-attentively ignored.

While not a large effect, the red words did slow visual search. One explanation for more

fixations when red words are present is that, just by their presence, the red words

provided more visual objects that could be used as the destination of saccades. The eye

movement data support this possible explanation in that the likelihood of fixating a blue

word rather than a red word decreased for longer saccades. However, the eye movement

data also demonstrate that distinct link colors are very useful in guiding a search. This is

true because they assist the programming of eye movements to relevant, unvisited links
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even when they are greater than 7.5 degrees of visual angle away from the current

fixation, despite evidence that color (hue) perception is degraded at and beyond this

angle.

The results of this experiment are relev~nt to design guidelines fa! differentiating the

color of web page links based on the whether the linked pages have been visited (Nielsen,

2007; U.S. Department of Health and Human Services, 2006). For tasks in which web

users need only search for relevant links to pages that have not been visited, this study

shows that the visual search can be made very efficient if visited links are clearly

discernible based on color. As the data show, layouts with thirty blue links - akin to Web

pages that do not differentiate unvisited and visited links - take longer to search.

However, the finding that the presence of red words slows search time suggests that

the guideline to differentiate links by text color might be improved. One possible

improvement that could be made is differentiating visited links by luminescence in

addition to color. Basic research has shown that color is not easily discernible in the

periphery, but luminescence is. As was seen in the eye movement data, link color is

useful in the periphery of the display for this task, but a difference in luminescence may

increase the benefit of differentiating visited links.

The results of this experiment extend an understanding of how color affects visual

search strategies, and informs the development of predictive models of visual search. For

example, it was found that people (a) tend to somewhat but not entirely ignore non-target-



colored items, and (b) tend to fixate nearby items in part because the target-identifying

features are easier to see. Further research may be needed to ensure that these findings

hold when the text is surrounded by or embedded in additional content, and to validate

the suggestion to differentiate web link: further with differences in luminescence.

Nonetheless, the strategy components demonstrated in this experiment are excellent

candidates for inclusion in predictive visual layout analysis tools.

3.3. Semantically Grouped Displays

A third experiment was conducted to determine how people visually search

semantically organized visual layouts. The experiment investigated effects of (a)

positioning a target in semantically similar words, (b) giving the groups identifying

labels, and (c) further subdividing the layouts into meta-groups using graphic design

techniques. It was hypothesized that (a) the use of semantic grouping would be slightly

less effective than group labels at facilitating efficient visual search, (b) group labels

would speed peoples' visual search, as previous research shows, and (c) subdividing

groups by common region would constrain people's visual search patterns.

3. 3.1 Method

This experiment investigated the effect of semantic grouping, group labels, and

common region on visual search of structured layouts of words. The remainder of this

section discusses an experiment that investigates the effects of visual and semantic

grouping on users' visual interaction. The task is described and the results ofan

experiment are discussed.

76
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3.3.1.1 Participants

Eighteen people, nine male and nine female, ranging in age from 20 to 62 years of

age (mean = 29.1; SD = 11.3) from the University of Oregon and surrounding community

participated in the study. The participant screening criteria, including verification of the

participants' vision, were identical to those used in the' previous experiment.

Participants were financially motivated to participate in this study, and to perform

with high speed and accuracy. The participants were instructed that they should complete

each trial quickly while making few errors. Participants were paid $15, plus up to $10

based on their performance. Speed and accuracy were motivated as follows: The

participant was initially given 8¢ to 10¢ for each trial, depending on the complexity of the

screen. They lost 1¢ for each second after the trial started until they clicked on the target.

If the participant clicked on something besides the target or if they moved the mouse

before they found the target, the participant lost all ofthe money for that trial plus 5¢.

The rewards and penalties were explained to the participants to motivate speed and

accuracy.

3.3.1.2 Apparatus

Visual search stimuli were presented on an AO Neovo X-174 LCD display at a

resolution of 1280 width by 1024 height at a distance of 61 em, which resulted in 39

pixels per degree of visual angle. The experimental software ran on Dual 2GHz

PowerMac 05 running OS X 10.4.7. The mouse was a wired Apple Mighty Mouse

configured for single-button operation, and the mouse tracking speed was set the fourth
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highest in the mouse control pane. The visual stimuli were presented with custom

software designed using the Objective-C++ programming language, Apple's Cocoa

framework, and Apple's XCode development environment. The software was developed

by the authors as part of this dissertation work.

Eye movements were recorded using a dual-camera LC Technologies Eyegaze

System, a 120 Hz pupil-center and corneal-reflection eye tracker. Details of the eye

tracker and eye movement analysis are given in section 3.1.1.3.

Participants completed the automated operation span (OSPAN) task (Unsworth,

Heitz, Schrock & Engle, 2005), which was presented using E-Prime 1.1 running on a

3GHz Pentium 4 running Windows XP SP2.

3.3.1.3 Stimuli

Figures 19 and 20 show sample layouts. Three variables were manipulated in the

layouts: the semantic cohesion of groups of words, the presence of group labels, and the

use of meta-groups. Groups of words were either semantically related (e.g. cashew,

peanut, almond) or randomly grouped (e.g. elm, eraser, potato). Groups were either

labeled or not. In some conditions, colored regions divided the groups into four meta­

groups. When the meta-groups were used in a semantically-grouped layout, groups in the

same colored region were further semantically related (e.g. nuts with candy, and clothing

with cosmetics). Figure 19 shows a layout with semantically-cohesive groups, group
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Figure 19. A layout from the semantic grouping experiment, with semantically-cohesive groups, group labels, and meta­
groups.
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labels, and meta-groups. Figure 20 shows a layout with random-word groups, no group

labels, and no meta-groups.

The only levels of variables not combined were randomly grouped words and labels.

Labeled, random groups were not used because the nature of the task would ch~ge

drastically, relative to the task using the other labeled layouts. The labels for the groups

would be misleading.

The layouts appeared on a white background (RGB values of255, 255, 255 and an

alpha of 1.0). Layouts were 29° wide by 17° high, centered on the screen. The remainder

of the screen was a gray background (RGB values of 128, 128, 128 and an alpha of 1.0).

When meta-groups were used, the were indicated with a green region (RGB values of

222,255,214 and an alpha of 1.0). When group labels were used, they were placed on a

white background that was 4.74° wide by 0.62° high and centered at the top of the group.

The groups were placed in a 3 x 5 grid. Groups are always vertically centered in each

grid cell, which are 4.74° wide of visual angle by 4.44° high. Groups were separated by

0.51 ° of horizontal whitespace and 0.41 ° of vertical whitespace. This resulted in an inter­

group vertical spacing of 1.54° between the baselines of adjacent words for labeled

groups and 2.31 ° for unlabeled groups. The distance between the left edges of

horizontally-adjacent groups was 5.77°. The inter-group horizontal spacing varied with

the length of the words used in each group.
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Layouts always contained eight groups. Each group contained five lowercase words

in 18 point Helvetica, black (RGB values 0, 0, 0 and an alpha of 1.0) font with 0.76° of

visual angle between the baselines of adjacent words. A bullet character appeared to the

left of every non-label word. When labels appeared, they were in 18 point bold Helvetica

and appeared above the top word in the group with 0.76 degrees between the baselines.

There were two types of groups: semantically cohesive or random. The words in the

cohesive groups always came from the same category. The words in the random groups

were pseudo-randomly selected from all category words. In some layouts, the groups

were labeled. When the labels were present, the category labels for the words in that

group were used. In some layouts, 1 to 4 groups were contained within a common region

defined by color. These categories of these groups of words were semantically related

(e.g. farm animals, wild animals, and birds).

The words used in each trial were selected from a hierarchical list of words based on

categories used in a study of word category nonns (Yoon et aI., 2004). Sixty-two

categories from Yoon, et ai. were used. Words were not used that did not meet the

following criteria: The entry must not contain non-alphabetic characters or spaces. The

word must not be in all capitals. If the word is an initialization, it must be pronounceable

(i.e. it must be an acronym). A word could only appear in one category. Variations of the

same word could only appear once (e.g. fridge and refrigerator). It must be clear that the

word is part of the category without additional context, like the category name.
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Categories were not used if there were fewer than eight words in a category or if there

was too much similarity with another category, as judged by the author and two

colleagues. The remaining categories were formed into super-categories.

The categories were further grouped into 14 super-categories. The formation of super­

categories was the result of consensus among the author and two colleagues. Each person

divided the groups into super-categories and then discussed categorization until a

consensus was reached.

3.3.1.4 Procedure

The procedure was as follows. Each participant signed an informed consent form, a

demographics questionnaire was administered, the eye exams were conducted, and the

participants were given instructions for the experiment. The participants were told that

they would complete many trials and that each would proceeded as follows: The

participant was shown and studied a precue ofthe target. The participant clicked on the

precue to make the precue disappear and the layout appear. The participant visually

searched for the target word without moving the mouse cursor. The participant moved the

cursor to the target word and clicked on it.

The participants were financially motivated to not move the mouse cursor until they

had found the target using the point-completion deadline, as discussed earlier.

At the start of each experiment, the eye tracker was calibrated to the user. The

calibration procedure required the participant to fixate a series of nine points until the
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average error between the predicted point of gaze and the actual location of the points fell

below an error threshold (approximately 0.6 degrees of visual angle). The automated

RFL procedure was not used to maintain calibration accuracy as in the previous two

experiments. An eye tracker was used in this experiment that was more accurate than the

eye tracker used in the previous two experiments. Specifically, a 120 Hz two-camera

upgrade to the LC Technologies system used previously. Preliminary trials indicated that

recalibrations were no longer required over the period of time these experiment would

take.

The trials were blocked by layout type. Each block contained 40 trials, preceded by

five practice trials. The blocks were counterbalanced using the balanced Latin square

technique. Trials were marked as errors if whitespace or a word besides the target was

clicked on, or if the point completion deadline was not met. Only correct trials are

analyzed.

The practice trials were identical to the experimental trials with two exceptions: (a)

Only the unlabeled, randomly-grouped, meta-groups-absent condition was used, and (b)

the words presented during the practice trials were different from those in the

experimental trials. These words were the same as those used in the local density and link

color experiments discussed in previous sections. The participants continued to practice

until they were comfortable with the task. The number of practice trials varied from 16 to

170 (M = 51.3, SD = 25.2). Once the practice trials were over, the participants completed



85

the experimental trials. Finally, the experimenter elicited comments from the participants

about how they completed the tasks.

Following a successful trial, the precue of the next trial was placed at the target

location of the previous trial. Following a trial in which an error occurred, the precue was

placed at the center of the display. During the visual search portion of the trial, to prevent

the mouse cursor from obscuring any layout item appearing at the same location as the

precue, the cursor appeared only when the mouse was moving.

3.3.2 Results

Search time began when the participant clicked on the precue and ended when the

participant started moving the mouse. Eye movement data included in the analyses

started from the first fixation that began after the precue was clicked, and ended with the

first fixation that stopped before the mouse started moving.

Search time and eye movement data were analyzed using mixed-model ANOVAs.

The Kenward-Roger correction method was used. An alpha level of .05 was used for all

statistical tests. Due to non-normal distributions of the data, a log transform was used on

the search time, number of fixations per trial, and fixation duration analyses. All means

shown for these data are adjusted means.

The analysis focused on the three experimental factors: the semantic cohesion of

groups of words, the presence of group labels, and the use of meta-groups. Because these

factors were not fully crossed, all conditions were treated as a single factor in the
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ANOVA analysis. The effect of these factors and their interactions were then analyzed

with contrast analyses. Besides these three manipulations, a number of additional fixed

factors were included in the analysis. These variables were gender, age, OSPAN score,

computer experience, the target word, the length of the target word, the target group label,

the location of the target group, the location of the precue, the distance to the target, and

carryover effects.

The mixed model for each analysis was extended with random variables. The random

variables were introduced one at a time and were removed if the Bayesian Information

Criterion (BIC) did not decrease by 20 or more. The following random factors were

found to contribute substantially to the models: the participants' individual differences,

the participants' age, block order, the location of the precue, and the group in which the

target appeared.

The data from 11 trials were excluded due to a bug in the software that recorded the

reaction time incorrectly for those 11 trials. All 11 trials were from the first three

participants' data.

3.3.2.1 Error rate

As shown in Figures 21, 22 and 23 the participants' error rates were fairly low, less

than 7 percent, in all conditions. Slightly more errors occurred when the groups were

semantically cohesive or when the groups were labeled. However, all error rates were

within 2.4% of each other and there are no clear trends as functions of semantic grouping
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8-r-------"=~---------"r-• Target not clicked
D Point completion deadline
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Semantic Condition

Figure 21. The percentage of errors in the Semantic Grouping experiment as a function of
semantically cohesive or random word grouping, and error type.

8--------------------..-
• Target not clicked
D Point completion deadline

o
Labeled Unlabeled

Label Condition
Figure 22. The percentage of errors in the Semantic Grouping experiment as a function of
labeled versus unlabeled groups, and error type.
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or

Absent
Meta-groups

Present

Figure 23. The percentage of errors in the Semantic Grouping experiment as a function of
the absence or presence of meta-groups, and error type.

label presence. As will be seen in the next section, visual search was faster when the

groups were semantically cohesive and when the groups were labeled. However, the

consistently low error rates suggest that the participants were not trading speed for

accuracy.

3.3.2.2 Search Time

The type oflayout affected search time, F(3, 1497) = 46.39,p < .01, but only the

effect of semantic grouping was significant, t(1474) = 10.06,p < .01. That is, participants

tended to take less time to find the targets when the layouts were semantically organized.

Figure 24 and Table 3 show the mean search times. The presence of meta-groups did not
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Figure 24. The mean search time per trial in the Semantic Grouping experiment as a
function of semantic grouping, group labels, and meta-groups. The standard error is too
small for the errors bars to be seen.

affect search time, t(1503) = 0.98, p = .33, nor did the presence of the group labels,

t(1503) = 0.23,p = .82.

Participants found nearby targets faster than distant targets, F(1, 4062) = 305.45, p < .

01. Besides the experimental factors, the only factor that affected search time was the

distance between the where the participants started searching (at the precue) and where

they finished searching (at the target).

No other factors affected participant search time. Search time did not vary with:

OSPAN scores, F(1, 12.6) = 0.69,p = .42
Gender, F(1, 12.6) = 0.02,p = 0.89
Age, F(l, 12.7) = 0.17,p = 0.69
Computer experience, F(l, 12.6) = 0.14,p =.72



Table 3. Search time, fixations, fixation duration, and saccade distance for all conditions in the Semantic Grouping

experiment.

Search Time (ms)* Fixations* Fixation Duration* Saccade Distance

Semantics Labels Meta-groups Mean SD Mean SD Mean SD Mean SD

Cohesive Present Present 2724 26 10.2 1.8 217 2 4.26 0.05

Absent 2724 26 lOA 1.9 218 2 4.24 0.05

Absent Present 2750 26 9.8 1.7 221 2 4.27 0.06

Absent 2794 26 10.2 1.8 221 2 4.29 0.06

Random Absent Present 3385 29 12.3 2.0 223 2 4.11 0.05

Absent 3464 29 12.5 2.0 227 2 4.16 0.05

n=18 *=adjusted means

\0
o
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Carryover from layouts with semantically cohesive group, labels,
and no meta-groups, F(1, 1472) = 1.14,p = .29

Carryover from layouts with semantically cohesive groups, labels,
and meta-groups, F(1, 1491) = 0.40,p = .53

Carryover from layouts with semantically cohesive groups, no labels,
and no meta-groups, F(1, 1525) = 0.04,p = .84

Carryover from layouts with semantically cohesive groups, no labels,
and meta-groups, F(1, 1482) = 1.60,p = .21 .

Carryover from layouts with random groups, no labels,
and meta-groups, F(1, 1527) = 0.27,p = .60

3.3.2.3 Eye Movements

The type of layout also affected the number of fixations per trial, F(3, 1496) = 32.77,

p < .01. Only the effects of semantic grouping was significant. The participants required

fewer fixations to find the target, t(1474) = 9.06, P < .01, when the groups were

semantically cohesive. The presence ofmeta-groups did not affect the number of

fixations, t(1506) = 1.35,p = .18, nor did the presence of the group labels, t(1494) = 1.26,

p =.21.

The participants' fixation duration was also affected by the type oflayout, F(3, 621) =

5.76,p < .01. Only the effects of semantic grouping was significant. Participants tended

to make shorter fixations, t(443) = 2.36,p = .02, when the layouts were semantically

organized. The presence oflabels, t(443) = 1.65,p = .10, and meta-groups, t(1485) =

0.15,p = .88, had no effect on the fixation durations.

The mean distance of participants' saccade was also affected by the type of layout,

F(3, 1477) = 4.44,p < .01. Only the effects of semantic grouping was significant.

Participants tended to make longer fixations, t(1457) = 3.30, p < .01, when the layouts
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were semantically organized. The presence of labels, t(1477) = 0.36, P = .72, and meta-

groups, t(1485) = 0.40,p = .69, had no effect on the saccade distances.

As shown in Figure 25, a qualitative analysis of the number of fixations per group of

words suggests that people behaved differently when groups were labeled an~ when the

groups were semantically cohesive!. The participants tended to use just one fixation per

0%
1 Cohesive-----
~Labeled---1r-----

60°/6 -r--------------------T"
111
~2
~

03
04
~5

Figure 25. Frequency of the number of fixations per group visit as a function of group
type (semantically cohesive and/or group label), and the number of fixations in a group.
Notice how one fixation is often enough for a cohesive group, especially in the labeled
layouts, whereas two fixations are typically needed for a random group. (Only the data
from layouts without meta-groups are shown here; the trends with meta-groups present
are similar.

1 A quantitative analysis could not be performed. The data were "truncated counting data" with a
distribution that could not be corrected to normal, which violated assumptions in all analyses of
which the author is aware. Any ANOVA analysis performed on the data did not detect the trend
seen in Figure 25.
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group when the groups were semantically cohesive and two fixations when randomly

organized. Within the cohesive groups, participants were more likely to use one fixation

when labels were present. Participants were also more likely to make four or more

fixations per group when the groups were labeled.

Besides the experimental factors, only thee factors affected the participants' eye

movements. These are (a) the distance between the precue and target, (b) the participant's

OSPAN score, and (c) a carryover effect from previous blocks. Fewer, F(1, 4192) =:

345.53,p < .001, and shorter, F(1, 4213) =: 167.94,p < .001, saccades were used when

the target was closer to the precue. Participants with a higher work memory capacity, as

indexed by the OSPAN task results, used shorter fixations, F(1, 13.6) = 7.06,p = .02.

Fixations were longer in blocks that were preceded by blocks with semantically cohesive,

unlabeled layouts, whether with meta-groups present, F(1, 1298) =: 3.87,p = .05, or with

meta-groups absent, F(1, 1077) = 8.89,p < .01. Fixations were also longer in blocks that

were preceded by blocks with semantically random, unlabeled layouts, with meta-groups

absent, F(1, 1127) =: 12.00,p < .01.

No other factors affected participant's eye movements. The number of fixations per trial

did not vary with:

OSPAN scores, F(1 , 12.2) =: 0.19,p = .67
Gender, F(1, 12.2) =: O.OO,p = .95
Age, F(1, 12.3) =: O.Ol,p = .94
Computer Experience, F(1, 12,2) =: 0.11, p =: .75
Carryover from layouts with semantically cohesive group, labels,

and no meta-groups, F(1, 1460) = 0.29,p =: .59



94

Carryover from layouts with semantically cohesive groups, labels,
and meta-groups, F(l, 1503) = 0.60,p = .44

Carryover from layouts with semantically cohesive groups, no labels,
and no meta-groups, F(l, 1457) = 0.32,p = .57

Carryover from layouts with semantically cohesive groups, no labels,
and meta-groups, F(l, 1536) = 1.68,p = .20

Carryover from layouts with random groups, no labels,
and meta-groups, F(l, 1513) = 0.36,p = .55

Participants' fixation duration did not vary with:

Target distance, F(l, 4144) = O.OO,p = .95
Gender, F(l, 13.8) = 1.08,p = .32
Age, F(l, 12.9) = 3.48,p = 0.08
Computer experience, F(l, 13.5) = 4.53,p = 0.06
Carryover from layouts with semantically cohesive group, labels,

and no meta-groups, F(l, 1289) = 0.08,p = .78
Carryover from layouts with semantically cohesive groups, labels,

and meta-groups, F(l, 1073) = 1.33,p = .2499

Participants' saccade distance did not vary with:

OSPAN score, F(l, 13) = 1.77,p =.21
Gender, F(l, 13) = 4.15,p = .06
Age, F(l, 13) = 0.30, p = .59
Computer experience, F(l, 13) = O.Ol,p = .93
Carryover from layouts with semantically cohesive group, labels,

and no meta-groups, F(l, 1443) = O.03,p = .87
Carryover from layouts with semantically cohesive groups, no labels,

and no meta-groups, F(l, 1438) = O.OO,p = 0.99
Carryover from layouts with semantically cohesive groups, no labels,

and meta-groups, F(l, 1513) = 2.51, P = .11
Carryover from layouts with random groups, no labels,

and meta-groups, F(l, 1492) = 0.07,p = .79

3.3.3 Discussion

This study investigates the effects of semantic content and visual indicators of

semantic relations on visual search. The data strongly support the hypothesis that people

use the structure provided by the semantic content of the words in the layout to guide
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their search. The unexpected results are what the data suggest about how people use

visual indicators of semantic relations.

People search layouts faster when the groups are semantically cohesive. This is not

surprising considering that in the semantically cohesive layouts, the meaning of non­

targets provide strong cues about the target location, and no similar information is

provided in the random layouts. As seen in Figure 25, people are more likely to make just

a single fixation to a group in the cohesive layouts. This suggests that people tend to

judge the semantic relevance of all objects in a group with that one fixation. This allows

the participants to "explore" more of the layout per fixation and thus reduces the number

of fixations required to find the target. Conversely, without the semantic content, it is

more difficult or impossible to discount an entire group of objects with just one fixation.

Both the fixations per trial and saccade distances also support this conclusion.

While the semantic content seems to provide useful information, a first pass of the

data suggests that the group labels provided no additional useful information. That is, the

results suggest that people use labeled and unlabeled layouts similarly when the groups

are semantically organized. This null result would seem to contradict previous research

that showed the importance of group labels in users' visual search strategies (Hornof,

2004). This previous finding was supported by results from a task in which no useful

semantic information was involved in the search. So, can we conclude from this study

that labels are not useful when layouts are semantically cohesive? Almost, but while the
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labels did not affect the search time or the total number of fixations needed to find a

target, the real story is in the detail of the eye movements.

Further analysis of the participants' eye movements supports previous claims of the

importance of group labels in visual search strat~gies. Additionally, the res~lts show how

the utility of group labels is extended to group items in semantically organized layouts.

Previous research on the eye movements motivated by the presence of group labels found

that people tended to use just one fixation per group (Homof & Halverson, 2003).

Comparable results were found here. As shown in Figure 25, when the groups were

unlabeled and cohesive, people behave much more like they do when searching labeled

groups. The participants tended to make just one fixation, presumably evaluating all

words in the group based on the words processed in that one fixation. One way to

interpret these results are that people were using any word in unlabeled and cohesive

groups as the label for that group.

The eye movement data also differentiate the use of labels and non-labels as semantic

indicators. While the semantic grouping had more of an effect than the labels, if we look

at the distributions in Figure 25, we can see that people were more likely to use one

fixation per group in the semantically organized layouts when the groups were labeled.

People were also more likely to make four or more fixations per group when the groups

were labeled. It appears as if people had more "trust" in the group labels. That is, people

were more likely to discount the contents of groups based on the group label, thus more
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one-fixation group visits, and more committed to searching a group when they believed

the target to be in a group based on the label, thus more four-or-greater fixation group

visits.

The results of this experiment extend .our understanding of how .semantics and group

labels affect users' visual search strategies. While previous research has shown the utility

of labels or the effects of semantic differences between words in a menu, this research

looks at the combined effects of both labels and semantic differences. Unexpected results

were found, such as the how the semantic cohesion of words in a group can substitute, to

some extent, for labels of those groups.

3.4 Summary

A series of experiments were conducted to better understand how people visually

search computer screens and motivate the development of an active vision computational

models of visual search. The effects of density, text color, and the semantic cohesion of

groups of words were studied. These studied extend previous psychological research.

More importantly, the experiments presented in this thesis identify ways in which these

factors affect people's human-computer visual interaction.

The local density of groups of words not only affects the speed with which people

search words, but also the order in which the groups are searched. It was found that

sparse groups are searched first and faster than dense groups. Additionally, in mixed­

density layouts when dense groups were searched early, they are searched in a sub-
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optimal manner relative to all-dense layouts. This suggests that interface designers should

not only use sparse groups to draw users' attention to important information, but that

caution should be used when mixing densities because information in denser groups of

words may be missed by the users. This research also suggests that a good computational

model of visual search will need to account for the strategies that people use and include

appropriate parameters to simulate the difficulty of perceiving denser and perhaps less

salient text.

While people are able to limit their search for words based on the color of the words,

they evidently cannot completely ignore words of a different color, at least for those

words further from the point of gaze. The presence of non-target-colored words slows

people's visual search of target-colored words. The results of this research strongly

supports the practice of differentiating link: status (i.e. visited or unvisited) with

peripherally visible color.

Finally, when searching, people can use semantically cohesive structures with or

without group labels much the same. When groups of words are semantically related,

people can evaluate an entire group in one fixation. This behavior can occur whether

labels identifYing the category of the group are present or not. Nonetheless, people often

use just one fixation to evaluate labeled groups more often than they use just one fixation

to evaluate the unlabeled groups. This suggests that group labels can be excluded and

users will likely still perform well, as long as the groups are meaningfully grouped. This
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finding is especially useful when screen real estate is limited, such as on handheld

computers, and the absence of group labels would reduce screen clutter.

The results from these experiments informed the construction of an active vision

computational cognitive model of visual search. The tasks presented and the data

analyses will be particularly useful for modeling visual search in the context of human­

computer interaction. Each task utilized structured layouts that approximate real-world

interfaces like those shown in Figures 1 and 2. Particularly important for the development

of models of visual search, precise eye movement data were collected. Not only was

aggregate eye movement data analyzed, but also eye movement data that uncover the

strategies people use, like the order in which visual groups in the layout are searched. The

next chapter discusses the development of the model using reaction time and eye

movement data.
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CHAPTER IV

MODELS

This chapter presents a candidate computational model of active vision for visual

search. This model is a substantial push towards a model for predicting visual search in

human-computer interaction tasks. Such a model is needed for automated interface

analysis tools, like CogTool (John & Salvucci, 2005), which do not yet have a fully

developed active vision model that can simulate people's visual search behavior.

The model instantiates proposed answers to the important questions ofactive vision

(Findlay & Gilchrist, 2003): What can be perceived during a fixation? When and why are

saccades initiated? What do the eyes fixate next? What information is integrated between

fixations? The proposed answers to these questions, and the research these answers on

based on, will be covered in this chapter.

Throughout this chapter, eye tracking data from two experiments is used to improve

the models. A principled approach is proposed for building models of visual search based

on a step-by-step improvement of the model using the most appropriate eye movement

measurement and model parameters. In this way, the model of active vision is developed,

refined and enhanced by accounting for more and more eye movement data.
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An aim of this research is to propose a model of visual search that can be used for

automated interface analysis tools, like CogTool (John & Salvucci, 2005) or CORE/X­

PRT (Tollinger et aI., 2005). The criterion for acceptable predictions by the models is a

10% average absolute error (AAE) between the observed and predicted data. A 10% AAE

will demonstrate that the models are reasonably accurate for such engineering goals

(Kieras, Wood & Meyer, 1997).

All models presented here were built using the EPIC cognitive architecture (Kieras &

Meyer, 1997). EPIC lends itself well to developing models of active vision, as it accounts

for constraints imposed by the eye and eye movements. As discussed in Chapter II, EPIC

is an computational framework written in C++. Some modifications were made to the

C++ classes representing EPIC's visual processors during the iterative process of refining

the models. These modifications are discussed in the following sections. The production

rules for the final model are presented in Appendix C.

4.1 Modeling the Local Density Task

The first task modeled in this research was the local density task presented in Chapter

III, section 3.2. The data collected using this task provided sufficient detail to inform the

construction of a model of visual search.

The modeling focused on the issues raised by previous research on density, e.g., the

number of items perceived per fixation, and other fundamental perceptual and ocular

motor issues of visual search. Previous modeling has used data from eye tracking to
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inform the development of models with respect to the order of search (e.g. Byrne, 2001).

However, in this section, the focus is on fixation duration and number of fixations in

order to inform the development of other aspects of computation models.

This research starts with a b~seline model using reaso~able initial assumptions, ~d

progresses to a model that explains many features of the data with refinements related to

what is perceived in a fixation and when saccades are initiated.

4.1.1 Baseline Random Search Model

The initial model in this research, which will be referred to as the Baseline Model,

starts with the a small set of reasonable assumptions. Initial assumptions of the modeling

include constraints supplied by the architecture. All of EPIC's perceptual properties were

left at established values. The assumptions included: Text centered within 10 of the point

of fixation will enter working memory after 149 ms. Saccades took time to prepare, from

50 ms if the previous saccade had the same direction and extent up to 150 ms ifthe

previous fixation had a different direction and extent. Saccades took 4 ms per degree of

visual angle (dov).

A couple of initial assumptions were extracted from the literature. First, the model

searched "without replacement." That is, any object for which the text had been perceived

was excluded from being the destination point of future saccades. While there is some

controversy over whether visual search proceeds without replacement (see for example

Shore & Klein, 2000) or with replacement (i.e. amnesic-search; see for example
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Horowitz & Wolfe, 2001), the preponderance of evidence favors search without

replacement. Second, saccade destinations were selected at random. There is a scarcity of

evidence for where search will proceed in layouts that consist of text. However, it has

been shown with previous modeling research that assuming a random search pattern

provides a good initial prediction of search time (Hornof, 2004).

The Baseline Model included a production-rule strategy that executed the task as

follows: The model fixated and memorized the target precue. As soon as the visual search

layout appeared, the model started searching for the target. The model moved its eyes to a

random word in the layout. As soon as the eyes arrived at the saccade destination, the

model initiated the next eye movement to a random object whose text had not entered

working memory. If at any time the target was identified, search was terminated, the eyes

were moved to the target, and the target was clicked.

4.1.1.1 Predictions

The Baseline Model was overall a poor predictor of human performance. As seen in

Figures 26 and 27, the predicted search times and fixation durations are incorrect both in

value and trend. Nonetheless, as can be seen in Figure 28, this rudimentary model

accurately predicts the observed number of fixations per trial for one condition. While

overall this model incorrectly predicts the number of fixations, the prediction for the

sparse layouts is quite good.
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Figure 26. Mean search time per trial observed (solid line) and predicted (dashed line) by
the baseline random search (BRS) model for the mixed-density task. Average absolute
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Figure 27. Mean fixation duration observed (solid line) and predicted (dashed line) by the
BRS model for the mixed-density task. AAE = 65.5%
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Figure 28. Mean number of fixations per trial observed (solid line) and predicted (dashed
line) by the BRS model for the mixed-density task. AAE = 26.7%

4.1.1.2 What Was Learned

The model's accurate prediction of the number of fixations per trial in the sparse

layouts is promising and suggests that the purely random search model is a good starting

point for modeling the characteristics of participant eye movements. While it is not likely

that the participants are randomly selecting saccade destinations, such a strategy does

provide an adequate starting point.

However, the fixation duration predictions show a strong need for an alternative

means of initiating eye movements. The greatest error was found in the fixation duration

predictions, with a 65.5% AAE. Saccades were initiated as soon as they could be by the

model, given the constraints of the architecture. This proved to be too fast, as the model
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predicts a fixation duration of 100 ms, whereas the participants used fixations that were

250 ms or longer. Additionally, the participants used longer fixations for the denser text

and the model did not. Therefore, the next round of modeling explored the initiation of

saccades to improve the model's predictions of fixation durations.

4.1.2 Improving the Predictions ofthe Fixation Duration

The observed eye movement data from the Local Density experiment presented in

Chapter III is used once again to guide the model development. As the predicted fixation

durations have the greatest error of the eye movement measurements examined in the last

section, this iteration of the model will focus on improving the fixation durations

produced by the model.

One of the things the Baseline Model got wrong was that the model initiated a

saccade to the next randomly chosen object as soon as the previous saccade was

complete. However, based on the results ofthe Local Density experiment, people appear

to adopt a search process that increased the duration of fixations on smaller, denser text.

This could be achieved a number of ways in the model. One approach would be for the

production rrues to directly set the fixation duration, though EPIC provides no such

facility. Another would be to hold back each saccade until a certain amount of

information is gathered from the currently fixated stimuli.

The model can be evaluated in the context of the four explanations of fixation

duration described by Hooge and Erkelens (1996) and discussed in Chapter II, namely
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preprogramming-per-trial, preprogramming-per-fixation, strict process-monitoring, and

mixed-control. Preprogramming of fixation durations alone does not explain the mixed­

density data very well. As shown in Figure 12, the fixation duration used in dense groups

is always longer than the duration used in sparse groups, suggesting that the density

(perhaps discriminability of the text) is driving the fixation durations. Further, in the

mixed-density layout trials, where a change in fixation duration is observed in the dense

groups, the change in duration is quite sudden. A preprogramming-per-trial explanation

would predict no change in duration during a trial. Apreprogramming-per-fixation

explanation would likely predict, if anything, a gradual change in fixation duration.

Instead, the participants' fixation duration tended to increase dramatically halfway

through the search. This suggests a strategy shift and not a change in estimation.

A strict process-monitoring strategy of saccade initiation (Hooge & Erkelens, 1996)

explains the mixed-density data better. As shown in Figure 12 in Chapter III, the fixation

durations vary as a function of the density of the group fixated, which supports the notion

of strict process-monitoring. The increase in fixation duration in the dense groups of the

mixed-density layouts may support the mixed-control explanation. However, the mixed­

control explanation is less parsimonious than the strict process-monitoring alone.

Additionally, the theory instantiated in EPIC lends itself to a process-monitoring

explanation of saccade initiation, as the timing and retinal availability of visual features

can be used in a straightforward manner to instantiate process-monitoring. While this fit

between the theory in EPIC and the process-monitoring does not make process-
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monitoring "right", Newell (1990) suggested "listen[ing] to the architecture" to find

reasonable solutions. Additionally, instantiating the preprogramming hypotheses of

saccade initiation would require additional mechanisms and parameters that are not

required with the process-monitoring strategy decreasing the parsimony of the model. A

preprogramming saccade initiation strategy might require a theory of time perception

(such as Taatgen, Rijn & Anderson, 2007) and to predict saccade time intervals. The

introduction of such temporal mechanisms may introduce unnecessary complexity to the

model. Therefore, the current modeling effort explores the use of a strict process­

monitoring to explain fixation durations, and doing so finds a nice mesh of extant theory.

4.1.2.1 Strict Process-Monitoring Strategy Model

The strategy rules were modified to include a strict process-monitoring strategy.

Figure 29 shows a flow-chart based on the production rules. This strategy, which shall be

called the prepare-then-wait strategy, initiates saccades only after the text property for the

current saccade destination becomes available and a decision has been made whether the

target has been found or not.

EPIC's perceptual processor was modified to accommodate a strict process­

monitoring, as follows. The default recoding time for text is a constant 100 ms. This was

modified when trying to explain the human data. As shown in Table 1, the observed

fixation duration in the dense layouts was over 100 ms longer than in the sparse layouts.

To model this, a stepped recoding function was introduced to calculate the perceptual

time for a feature based on the proximity of adjacent items. If an object's closest neighbor
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Figure 29. Flow chart ofthe production rules for an instantiation of the strict process­
monitoring strategy.

was closer than 0.15 dov (a dense object), the text recoding time was 150 ms. Otherwise

the text recoding time was 50 ms.

4.1.2.2 Predictions

As shown in Figure 30, a large improvement was found in the predicted fixation

durations when the model was modified to use a strict process-monitoring strategy.

Delaying the initiation of saccades until after the text information had entered working

memory and an increased recoding time for dense objects resulted in a differentiation in

fixation durations similar to that in the observed data. The predicted data could have been

further improved by reducing the text recoding time for sparse objects further, as the

majority of the error in the predicted data lies in the sparse and mixed layouts. However,

the purpose of this modeling was to approximate the ocular-motor behavior in the
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Figure 30. Mean fixation durations observed (solid line) and predicted (dashed line) by
the strict process-monitoring strategy (SPMS) model for the mixed-density task.
AAE= 10.0%

observed data and meet the criterion for acceptable predictions of 10%, so further fine-

tuning of fixation durations was not performed.

The predicted mean search time only improved slightly. As seen in Figure 31, there is

now a very slight upward trend in the search time. However, the slope of the predicted

search time line is not nearly as steep as the observed search time line.

As shown in Figure 32, the predictions for the number of fixations per trial worsened.

The model still does not make more fixations in layouts with dense objects, as is seen in

the observed data. Further, the overall mean number of fixations has dropped in

comparison to the base model. Detailed traces of the models revealed that the drop in the

mean number of fixations was due to the prepare-then-perform strategy. The Baseline
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Figure 32. Mean number of fixations per trial observed (solid line) and predicted (dashed
line) by the SPMS model for the mixed-density task. AAE = 48.1 %
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Model initiated approximately three additional fixations after the target had been fixated

but before the text property for the target had become available. This resulted in roughly

three more fixations per trial than the prepare-then-execute strategy, which inhibited

additional fixations until the text property was perceived.

4.1.2.3 What Was Learned

A model using a strict process-monitoring strategy for saccade initiation provides

straightforward, plausible predictions. The monitoring strategy is well supported by EPIC

as the availability of features through the various visual processors produces a delay that

is slightly less than the observed mean fixation duration in humans. Further, after

including the time to decide, prepare, and execute the eye movement, the eye movement

latency predicted by EPIC matches the mean fixation duration of humans very well.

While other explanations of fixation duration control (Hooge & Erkelens, 1996) could

possibly be used to explain the observed fixation duration data, doing so would require

introducing addition processes and many more parameters in to the EPIC cognitive

architecture. Therefore, the process monitoring strategy will remain as an important

component of the model in this research, as it is both parsimonious, predicts the observed

data very well, and is supported by the literature.

Since the greatest error now lies in the predicted number of fixations per trial, the

next model focused on improving the number of fixations predicted by the model.
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4.1.3 Improving the Predictions a/the Number a/Fixations

The number of fixations predicted by the model is largely determined by a

simplifying assumption about the area in which text is perceived. The assumption was

that all text within the fovea (1 dov) is perceived during each fixation. This results in the

model perceiving two to three sparse objects, or five to seven dense objects, in each

fixation. Consequently, the model was able to perceive all items in a layout with an equal

number of fixations, regardless of the layout density. The observed data suggests that

humans do not do this. People require more fixations for dense text. An increase in the

number of fixations predicted for dense objects can be achieved in a number of ways.

One way is to reduce the region within which dense text can be perceived. Another is to

reduce the probability of correctly perceiving text based on the size or spacing of the text.

Both methods were tested in the models.

Adjusting the region in which text can be perceived, such that two to three objects are

processed per fixation can help account for the observed number of fixations in a search

task (Homof & Halverson, 2003). EPIC's default settings already limited sparse words to

two or three per fixation. Different region sizes for dense text were tried, and 0.5 dov

worked best, resulting in two to three words per fixation in dense text. Perceiving two to

three words per fixation, regardless of text density, resulted in a much better fit for the

predicted number of fixations per trial. However, as shown in Figure 33, the model was

still under-predicting the number of fixations per trial in all layouts, and so this words-
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Figure 33. Mean number of fixations per trial observed (solid line), predicted by the Text­
Encoding Error (TEE) model (dashed line with circles), and the Reduced-Region (RR)
model (dashed line with squares) for the mixed-density task. The AAE of the TEE model
is 8.8% and the RRmodel is 21.1%.

per-fixation approach was passed over in favor of a probability-of-encoding approach

discussed next.

4.1.3.1 Text-Encoding Error Model

To adjust the probability of incorrectly encoding text, EPIC's perceptual processor

was modified again so the probability of encoding the text of an object is based on the

distance to the nearest neighboring object. Using the distance to the nearest neighboring

object is one of several ways to measure density. One advantage of this measure for ease

and practicality in predictive modeling is that it only requires the position of each item on

the screen. If an object's closest neighbor was 0.15 dovaway or more (sparse text), the
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probability of the model incorrectly perceiving the text was 10%. Otherwise, the

probability of the model incorrectly perceiving the dense text was 50%. These

probabilities were chosen because they would result in two to three items, on average,

perceived per fixation across densities, which appeared to be the right number of items

per fixation to explain the human data.

4.1.3.2 Predictions

As seen in Figures 33 and 34, with text-encoding errors introduced to the model, the

predicted number of fixations and the predicted search time improved considerably. The

average absolute errors for the two measures are 8.8% and 6.5%. The number of fixations

per trial now closely approximates the observed data. The accuracy of six data points,

number of fixations and search time across all three layouts, were greatly increased by
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Figure 34. Mean search time per trial observed (solid line) and predicted (dashed line) by
the TEE model for the mixed-density task. AAE = 6.5%
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adding one perceptual parameter, a parsimonious improvement. Additionally, the

modification made to the text-encoding property remains true to a principle in the EPIC

architecture in which the processing of visual objects is differentiated based exclusively

on the features of those visual objects.

4.1.3.3 What Was Learned

The modeling suggests that the use of encoding errors is a good method to simulate

the perceptual constraints of density, at least for the perception of text in the current task.

When all items are perceived in every fixation, the model underpredicts the number of

eye movements the humans need to find the target. Reducing the area in which the model

could perceive text did not predict the human behavior well. When the model was

modified to include the possibility of misperceiving text, the predictions of the number of

fixations used in each layout became very good.

4.1.4 Discussion

During exploratory modeling (i.e. modeling to investigate how observed human data

can be explained), a random search strategy is a reasonable first approximation that

allows the analyst to focus on other fundamental ocular-motor activity that affects visual

search. If an analyst can initially account for fundamental perceptual and ocular-motor

activity with such a parsimonious strategy, the analyst may find it easier to explore other

important aspects of the model, like the time to encode and probability of encoding the

visual objects, which are unrelated to the order in which the objects are explored.
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The process-monitoring strategy of saccade initiation instantiated in this model not

only accounts for fixation durations in a straightforward and parsimonious manner but

also suggests when saccade destinations are selected. In the model, saccades are initiated

as soon as the relevant visual features (i.e. target-identifying features, like text) of the

currently fixated objects enter working memory and a decision is made as to whether the

target has been found or not. The observed fixation durations can be explained by such a

model. This suggests that visual features necessary to identify the target will affect the

subsequent saccade destination, but that any unnecessary features that may take longer to

enter working memory will not affect the saccade destination. Confirmation of this

hypothesis is left for future research.

The modeling suggests that the use of encoding errors better simulates the perceptual

constraints of density than changing the size of the region in which text can be perceived.

One means of accounting for the number of fixations in a visual search of words is to

limit the number of words perceived per fixation to two to three on average. Hornof

(2004) found in that limiting the number of objects perceived per fixation to two to three

items helped predict observed search times. The same assumption here helped to predict

search time and number of fixations. Note, however, that different kinds of text (e.g.

larger font, larger spacing, or longer phrases) might require more fixations per word.

Bertera and Rayner (2000) concluded that the effective field of view, the region in

which information is used during a fixation, did not decrease as density increased. The
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findings here support that conclusion and expand upon it. The task modeled in this

research differed from that used by Bertera and Rayner, which used randomly arranged

single letters. In the current task, density was manipulated by varying the size of text and

spacing (which is arguably more ecologically valid). Still, similar conclusions were

reached. Future work is required to study the effects of density where text size and

spacing vary independently.

4.2 Modeling the eve Search Task

A comprehensive model of active vision will need to account for how a person would

deploy their active visual system to navigate a wide range of visual layouts and visual

features, such as those shown in Figures 1 and 2 in Chapter 1. The progression towards a

model of active vision continues here with the modeling of a second set of data, the eve

(consonant-vowel-consonant) search task (Hornof, 2004). The eve task is called such

because the task used three-letter pseudowords (such as ZEJ, HAN, NUH) that were used

to control for word familiarity and other effects. This stage of the modeling primarily

focused on two issues - evaluating previous assumptions in the model and refining the

model to account for additional eye movement measures.

The eve experiment was originally conducted by Hornof (2001) without eye

tracking, and modeled by Hornof (2004). The experiment was run again by Hornof and

Halverson (2003) to collect eye movement data to evaluate the models in more detail. It

is useful to return to the eve search task because there are adequate similarities and

meaningful differences between the local density task and the eve search task. Again,
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the layouts consisted of text only. However, in the eve task the number of items in the

layout varied with the size of the layouts and not as function of the density of the text in

the layout.

The eve task included layouts with and without a visual hi~rarchy. The layouts

discussed in this dissertation are those without a visual hierarchy. Figure 35 shows a

sample layout from the experiment.

Sixteen people participated in the most recent replication of the study in which eye

movement data was collected (Homof & Halverson, 2003). Each layout contained one,

two, four, or six groups. Each group contained five objects. The groups always appeared

at the same physical locations on the screen. One-group layouts contained only group A

. in Figure 35. Two-group layouts used groups A and B. Four-group layouts used groups

A through D. In each trial, the entire layout was displayed at the same moment,

permitting any search order. The trials were blocked by layout.

ZEJ
HAN
NUJ
BEG

PIJ

SAR

WOM
VIN
KIM
HOW
KEZ

t-)

ZIP MAX
ZIL DUD
RAM FOV
FOZ FUT
SEN REX

ZIS HIJ
DOB SOK

...... ZEY ZOS
\ .. ;

>.: "j)'::)', J SAH ZEJ

~t (: _.'.. NIR RED

Figure 35. A layout without labels from Homof's (2004) eve search task.
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Each trial proceeded as follows: The participant studied and clicked on the precue; the

precue disappeared and the layout appeared; the participant found the target, moved the

mouse to the target, and clicked on the target; the layout disappeared and the next precue

appeared.

4.2.1 Original eve Model

Hornof (2004) presented models that predicted and explained the search time data

collected from the visual hierarchy task. In the model, the eyes moved down the first

column oftext, then down the second column, and then down the third. Furthermore, the

eyes jumped over a carefully controlled number of items with each eye movement,

sometimes missing items on a first pass, which introduced some "noise" into the model

and helped explain the human search time data. This selection strategy resulted in a

plausible explanation for how people did the task in that the model accounted for the

reaction time and a fair number of eye movement measures. It is perhaps impressive that

the models correctly accounted for some of the eye movement data in that the models

were built without any eye movement data to guide the development of the models.

However, the model's strategy is perhaps somewhat overly tuned to aspects of this

one visual task and layout. Components of the strategy, such as the strict use of the three

columns, will not be directly applicable to a wide range of visual layouts. The original

CVC task model might thus be characterized as somewhat brittle, whereas a more

flexible model might be more useful for predicting human performance in a wider range

of visual search tasks.
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This concern motivated a more flexible model that would predict the eye movements

with greater fidelity and in a more general, task-independent manner. The data collected

by Hornof and Halverson (2003) are used to further improve on the model of active

vision developed in this dissertation.

4.2.2 Improving Saccade Distance

The previous model included a simplifying assumption that saccade destinations are

selected at random from all items on the screen. This assumption was good enough to

predict the mean search times, the mean number of fixations per trial, and the mean

fixation durations. However, as it is unlikely that people select saccade destinations at

random, the location of where the model fixates requires improvement.

One job of the human visual search process is to decide which objects to fixate.

Though a completely random search strategy is very useful for predicting the mean

layout search time, people do not search completely randomly. Instead, people move their

eyes to objects that are relatively nearby more often than objects across the layout.

Saccade destinations tend to be based on proximity to the center of fixation when the

target is not visually salient (Motter & Belky, 1998).

The original eve task model suggests that moving to nearby objects is a reasonable

strategy that explains the data. The best fitting model for the eve task data in Hornof

(2004) uses a strategy that moves the eyes a few items down each column of words on
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each saccade. While the strategy of the best fitting model did a good job, a more general

strategy for saccade destinations is needed.

Previous research supports the idea that people tend to fixate nearby objects.

Fleetwood and Byrne's model of icon search (2006) shifted covert v~sual attention to the

nearest icon that matched the target icon in some way. The model was very systematic in

the sense that it always chose the closest icon that met other criteria that the research

emphasized more, namely looking at icons that matched one randomly chosen feature of

the target icon. Motter and Belky (1998) investigated where monkeys were likely to

detect a target during a fixation and found that the monkey's eyes were more likely to

move towards objects just outside the region in which targets could be detected.

Additionally, an important finding for the current research was that, although the eyes

were more likely to go to nearby objects, they did not always go to the nearest object.

4.2.2.1 Fixate-Nearby Model

The strategy used by the model was modified so that saccades were more likely to

land on nearby items, as follows. Rather than searching randomly or following a

prescribed search order, as with previous models, the strategy selected saccade

destinations with the least eccentricity (distance from the eye position). To account for

variability in saccade distances, as observed in Motter and Belky (1998), noise is added

to the model's process of selecting the next saccade destination as follows: (a) After each

saccade, the eccentricity property of all objects is updated based on the new eye position.

(b) The eccentricity is scaled by a fluctuation factor, which has a mean of one and a
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standard deviation of 0.3 (determined iteratively to find the best fit of the mean saccade

distance). This scaling factor is individually sampled for each object. (c) Objects whose

text has not been identified and are in unvisited groups are marked as potential saccade

destinations (i.e. search without replacement). (d) The candidate object with the lowest

eccentricity is selected as the next saccade destination.

The strategy used by the model was also modified to reduce how often the model

would revisit groups before visiting the rest of the layout. While the participants did

revisit groups on occasion, approximately once everyone to four trials, the majority of

these revisits occurred either (a) after all groups had been visited once, or (b) because the

target was overshot, resulting in a fixation in another group before refixating the target.

One possible explanation for the low rate of revisits is that people tend to remember the

regions they have explored. The current research takes a straightforward approach to

modeling this behavior: A constraint was added to inhibit group revisits until the entire

layout had been searched. Without this constraint, the model was much more likely to

revisit a group than found in the observed data.

4.2.2.2 Removing Text-Encoding Errorsfrom the Model

In an effort to explain the eye movement data and to depict the human information

processing that is not directly observable, two mechanisms have been introduced to the

mode: (a) noisy saccades to nearby objects and (b) inhibition of group revisits. These two

mechanism may interact to produce the same effect as the encoding errors introduced

while modeling the local-density search task. If the noise in the saccade selection strategy
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results in the gaze moving to another group before all words in the current group have

been processed, the target can get passed over. Encoding errors were previously used to

explain the additional saccades sometimes required to re-examine the layout. So that the

model does not include two explanations for one phenomenon, the encoding errors were

removed.

4.2.2.3 Predictions

As shown in Figure 36, the model predicts the mean saccade distances very well, with

an average absolute error (AAE) of 4.2%, a considerable improvement over the AAE of

43.3% in the Original Model. As shown in Figure 37, this model also does a good job of
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Figure 36. Saccade distance observed in the eve search task (solid line), predicted by
the original eve search task model (dashed line with squares), and predicted by the
Fixate-Nearby (FN) Model (dashed line with circles). TheAAE of the original model is
43.3% and of the FN model is 4.2%.
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Figure 37. The most commonly observed scanpaths in the eve search task in six-group
layouts and how often each path was taken by the participants (observed) and the models
(original and FN).

predicting the observed scanpaths. The figure shows the three most frequently observed

scanpaths, and how the current model predicts the observed scanpath frequencies better

than does the Original Model (Homof, 2001). However, as shown in Figure 38, the

predicted number of fixations per trial is not within our intended AAE of 10%, although

the predicted number of fixations did improve considerably (AAE = 14.3%) compared to

the Original Model (AAE = 37.8%).

4.2.2.4 What Was Learned

Results from this modeling suggest that people select saccade destinations partly

based on eccentricity from fixation center. The selection of saccade destinations based on

proximity resulted in good fit of both the mean saccade distance and the scan paths that

people used in this task. The model with random saccade destinations predicted saccade

distances much larger than is seen in the observed data. Additionally, the random

selection predicted little difference based on the size of the layout. When the saccade

destination selection uses proximity, the effect of the size of the layout on observed
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Figure 38. Fixations per trial observed in the eve search task (sold line), predicted by
the original model (dashed line with squares), and predicted by the FN model (dashed
line with circles). TheAAE of the original model is 37.8% and of the FN model is 14.3%.

saccade distances seen in Figure 36 is accounted for. The observed and predicted saccade

distances increase with the size of layout. Further, the two most frequent scanpaths,

which account for nearly half of all observed scanpaths, are matched very well by the

model that uses proximity.

This "nearby with noise" strategy used in the model has a couple of benefits for

predicting visual search compared to models whose predictions are based on particular

visual structures or saliency of visual features. First, only the location of the layout

objects is required. This is beneficial if other properties in the layout are unknown or
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difficult to extract. Second, this search strategy can be used when visual saliency alone

cannot predict visual search, as is the case with goal-directed search (Koostra, Nederveen

& de Boer, 2006). Unlike the Original Model (Hornof, 2004), the Fixate-Nearby Model

does not require a predefmed notion of how the eyes will move through the layout to

predict the observed scanpaths.

While the fidelity of the model improved overall, the predictions for the number of

fixations was not acceptably accurate. While the accuracy of the predictions improved

and the number of fixations increased with the number of items in the layout, the

predicted number of fixations diverged from the observed number of fixations as the

layouts grew in size. The model was able to find the target with fewer fixations than the

participants did. In the next section, the focus of the modeling returns to the number of

fixations.

4. 2. 3 Revisiting the Predictions ofthe Number ofFixations

Text-encoding errors were removed from the model presented in the previous section,

but the model still underpredicts the number of fixations per trial. It was speculated

earlier that text-encoding errors introduced while modeling the local-density task might

not be needed because of the changes made in the previous section. However, when text-

encoding was removed, the model again underpredicted the number of fixations. Text-

encoding errors are reintroduced in order to improve the model's predictions for the

number of fixations per trial.
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4.2.3.1 Text-Encoding Errors Revisited Model

The text-encoding error rate was once again set to the previous parameter value. This

error rate was changed by 1% increments until the model predicted the mean number of

fixations per trial well. A value of 9% provided the best fit for the number of fixations per

trial.

4.2.3.2 Predictions

As shown in Figure 39, the text-encoding revisited model predicts the number of

fixations per trial very well, with an AAE of 4.2%, which meets our goal of an AAE of

10% or less. The introduction of text-encoding failures improved the predictions.
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Figure 39. Fixations per trial observed (circles) in the eve search task, predicted by the
Text-Encoding Error (TEER) model (dashed line with squares), and predicted by the FN
model (dashed line with circles). The AAE of the TEER model is 14.3% and the FN
model is 4.2%.
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4.2.3.3 What Was Learned

These results reinforce the findings presented earlier with the local-density task that

people occasionally miss the target, even when looking directly at it. A failure rate of

approximately 10% predicts human performance in this respect across multiple tasks. The

increased accuracy in the model's predictions and the similarity between the best-fitting

text-encoding failure rate found here and the rate found in past research provides support

for the use of the text-encoding failure rate parameter. Future research will need to

address the possibility of encoding failure rates for non-text stimuli.

4.2.4 Revisiting the Predictions ofthe Fixation Duration

In the modeling of the local density task, it was found that a strict process-monitoring

strategy predicted people's fixation durations well. That is, saccades are initiated as soon

as the currently fixated objects are identified.

However, the particular implementation of the strict process-monitoring strategy, the

prepare-then-perform strategy, was found to be problematic for two reasons. First, the

strategy overpredicts the fixation durations for the CVC task. Second, previous research

suggests that the "prepare" part of the prepare-then-perform strategy that was previously

implemented as a motor preparation process in EPIC is instead a cognitive process

(Kieras, 2003).

4.2.4.1 Process-Monitoring Revisited Model

To address issues identified with the previous implementation of the strict processing

strategy, a new saccade initiation strategy is proposed and implemented in this iteration of
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the model. This new process-monitoring strategy differs from the previous process­

monitoring strategy largely in two ways: Ocular motor movement preparation is removed

from the EPIC architecture and is replaced by a multi-stage process for selecting the

saccade destination. As identified in research by Kieras (2003), only a constant motor

movement initiation time (50 ms) is required to correctly simulate the execution of eye

movements. The motor movement feature preparation times previously included in the

model has been attributed to decision processes that are better modeled by selection of

saccade destinations in the production rules. Multiple stages are used in selecting the

saccade destination. In the first stage, different sub-strategies can each nominate saccade

destinations. In the second stage, one of the nominated saccade destinations is selected

based on a set of prioritized rules.

4.2.4.2 Predictions

As shown in Figure 40, the Process-Monitoring Revisited Model predicts the fixation

durations for unlabeled layouts very well, with an AAE of 4.6%. The new

implementation of the strict process-monitoring strategy seems to predict the users'

saccade initiation strategy well. As shown in Figure 41, the model also predicts the

observed search time well, AAE = 9.7%.

4.2.4.3 What Was Learned

The strict process-monitoring strategy continues to predict user behavior well, even

with a modified implementation of the saccade initiation strategy, a new set of data and

different stimuli. While the Original Model predicted the search time better than the
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Figure 40. Observed fixation duration (circles) in the eve search task, predicted by the
original model (diamonds), and predicted by the Process-Monitoring Revisited model
(squares). The AAE ofthe original model is 26.5% and the Process-Monitoring Revisited
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Figure 41. Observed search time (solid line) in the eve search task, predicted by the
original model (dashed line with squares), and predicted by the Process-Monitoring
Revisited (PMR) model (dashed line with circles). The AAE of the original model is
4.2% and the Process-Monitoring Revisited model is 9.7%.



132

active vision model proposed in this thesis, the active vision model still predicts the

search time within our intended AAE of 10%. Additionally, as shown in this and previous

sections, the active vision model predicts the eye movement data better than the Original

Model.

4.2.5 Discussion

The computational model of visual search proposed by this dissertation does a good

job of predicting the search time, number of fixations, fixation duration, saccade distance,

and scanpaths for two tasks. The model does so primarily by employing four constraints

and associated visual features: (a) a strict-processing model to account for saccade

durations; (b) text-encoding errors to help account for total fixations; and (c) fixating

nearby objects and (d) inhibiting group revisits, both to help account for saccades

distances and scanpaths. The model details are motivated by eye movement data and

previous research, and can be applied to other modeling research. In the next section, the

active vision model is further validated.

4.3 Model Validation with the Semantic Grouping Task

An aim of this research is to inform the development of predictive, automated

interface analysis tools and, as such, a validation of the a priori prediction capabilities of

the post hoc model developed in this research is required. The active vision model that

was developed and refined in the research trajectory described in sections 4.1 and 4.2 was

next applied to the semantic grouping task discussed in Chapter III. This task provides a

rich set of reaction time and eye movement data for a task that is arguably more
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ecologically valid than the other tasks on which the model was built, so this should be a

good test of the model. Search time, number of fixations, and fixation duration

predictions of the model were compared against human performance for the semantically

cohesive and random layouts.

4.3.1 Predictions

As shown in Figures 42, 43, and 44, the model did a very good job of predicting the

search times, number of fixations, and saccade distances for the random-group

conditions. In all three measures, when only considering the random conditions, the

model predicted the observed data with accuracies well below the intended AAE of 10%.
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Figure 42. Search time observed in the semantic grouping task (circles), predicted by the
Active Vision model (squares). The AAE is 20.7% and for the random layout alone,
6.5%.
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Figure 43. The number of fixations per trial observed in the semantic grouping task
(circles), and predicted by the Active Vision model (squares). The overall AAE is 20.2%
and for the random layout alone, 3.0%.
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With the exception of saccade distance, the model did not accurately predict human

performance in the semantic conditions. Since the cognitive model had no representation

for semantic information and hence did not utilize semantic information, it was expected

that the model would make more fixations in the semantic condition than people who

sometimes discounted entire groups of words based on one fixation when the layouts

were meaningfully organized.

4.3.2 What Was Learned

The model developed in this dissertation does a good job of predicting visual search

performance in tasks slightly different than those it was designed to predict, thus

providing some validation for the model. The model predicted human data from the

semantic grouping task (for layouts without organized semantic relationships) quite well.

The model predicted the search time and eye movement data within our intended AAE of

10%. The ability to predict visual search behavior a priori for a task that includes a larger

layout, more words, and a different word set provides some validation for the active

vision model proposed in this dissertation. These results suggest that the model would be

an appropriate starting place for modeling more complex tasks with more complex

stimuli.

The correct predictions and mispredictions made by the model in the semantically­

grouped conditions provide guidance for future work. The finding that the saccade

distances could be accounted for by the current model suggests that one important aspect

of the model, the basis of saccade destination selection, could be utilized for predicting
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human data from the conditions in which the words were semantically organized. The

validations suggests that certain constraints of human information processing are

invariant across tasks and that the current model has captured those constraints. The

misprediction of the number of fixations required to find the target in the semantically­

cohesive condition points to a need for including word-similarity for an even more

comprehensive model.

4.4 Summary

The proposed candidate for an active vision model of visual search - and the process

of arriving at the model- have implications for representing - and developing ­

active vision in computational cognitive models. The model of visual search proposed

here accounts for a variety of eye movement data, from fixation duration to scanpaths.

The model does so by employing visual search strategies and constraints, informed by

eye movement data and previous research, that can be applied to other modeling research.

The strategies and constraints in the model suggest answers to the four questions of active

vision (Findlay & Gilchrist, 2003), which are: (a) What can be perceived during a

fixation? Items nearer the point of gaze are more likely to be perceived, with varying

eccentricities for different features. However, the visual features (e.g. text) of nearby

objects are sometimes misidentified. This research supports the use oftext-encoding

errors, even for objects very near the center of fixation. (b) When and why are saccades

initiated? A strict process-monitoring saccade initiation strategy predicts peoples' fixation

durations well. While other hypotheses of saccade initiation (Hooge & Erkelens, 1996)
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are not ruled out by this research, the instantiation of the process-monitoring strategy

used in this research is able to predict visual search behavior without additional

mechanisms or parameters that would be necessary to implement the other saccade

initiation strategies. (c) What do the eyes fixate next? The eyes tend to go to nearby

objects. When the target does not "pop out", a strategy of selecting saccade destinations

based on proximity to the center of fixation predicts people's eye movement behavior

well. (d) What information is integrated between fixations? The memory for the locations

previously visited is required between fixations. While identifying the constraints of

working memory on visual search was not an explicit goal of this research, the modeling

does suggest something about the use of memory during the visual search of structured

layouts. The proposed model uses the memory for previous groups visited to help explain

the observed saccade distances and scanpaths. So memory for previously fixated

locations may be integrated across fixations to guide search toward unexplored areas

(Klein & MacInnes, 1999).

The research reported in this dissertation informs the process of building

computational models of visual search in a principled way. The model is (a) based on a

variety of eye movement measures, (b) informed by previous research literature on visual

search, and (c) guided by the principles underlying the EPIC cognitive architecture.

Using eye movements to inform the building of computational models of visual search is

useful. The original eve model discussed in section 4.2 predicted the search time

slightly better than the active vision model of visual search proposed in this dissertation.
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However, the original model did not do as well at predicting the eye movements. This is

not surprising since the original model was not informed by eye movement analysis.

However, this discrepancy between predicting visual search time and predicting detailed

visual search behavior (i.e. eye movements) shows a strong need for utilizing eye

movement data when building models. The comprehensive model proposed in this

dissertation was informed by a variety of eye movement measurements at every step of

the process, which provides more support for the resulting model. The visual search

literature provides additional support for the model. Previous claims in the research

literature were computationally instantiated and integrated within the proposed model

(Bertera & Rayner, 2000; Hooge & Erkelens, 1996; Motter & Belky, 1998). These

instantiations provided potential refinements of previous claims, such as with Bertera and

Rayner's (2000) finding that effective fields of view do not change as a function of

density. The modeling reinforced and refined Bertera and Rayner's claim by showing that

using text-encoding errors, with the error rates differentiated by text density, explains the

data better than varying the region in which text can be perceived as a function of density.

The model currently predicts the visual search of text-based displays with an

acceptable level of accuracy for engineering based models. An active vision model of

visual search based on the research proposed in this dissertation will be useful for

automated interface analysis tools. In fact, it has already been demonstrated to be useful

for such tools. As evidence of the need for and impact of the research described in this

dissertation, some of which has already been disseminated, CogTool-Explorer was
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recently updated (Teo & John, 2008) to include aspects of the visual search strategies

identified by the research reported here. The accuracy with which CogTool-Explorer

predicts visual search behavior improved when augmented with principles identified in

this research. Future work will be needed to improve on the range of stimuli and task

behavior, but the computational model of active vision presented here is already looking

to the future.
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CHAPTER V

CONCLUSION

This dissertation investigates human-computer visual interaction through experiments

and computational cognitive modeling. Three experiments were conducted that

investigate the effects of visual layout properties on active vision. Three sets of data (two

from the experiments reported here) were accurately modeled in the EPIC cognitive

architecture, the results of which extend our understanding of how people visually search

computer displays by instantiating a model that addresses the questions put forth by the

notion of active vision. Table 4 shows a summary of the experiment and modeling work

reported in this dissertation.

5.1 Summary of Empirical Work

The work presented here builds useful theory for human-computer interaction. Three

experiments were conducted that further our understanding of how people use active

vision to interact with computer displays, specifically text-based layouts. Each

experiment investigated the effects of a specific visual design factor. The results from

these experiments provide insight for human-computer interaction theory and design

practice.
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Table 4. A summary of the tasks, observed phenomena, and where the experiments and
modeling are reported.

Task ObservedP,~enomenon Experiments Modeling

Mixed Sparse text searched first and faster (Halverson & (Halverson &
Density Homof,2004c) Homof, 2004a)

Link Irrelevantly colored items slow search, (Halverson & Future Work
Color especially in the periphery Homof, 2004b)

CVC Group labels motivate a systematic (Homof, 2004) (Halverson &
Search strategy Homof, 2006)

Semantic Semantically-cohesive groups and (Halverson & non-semantic
Grouping group labels allow similar Homof, 2008) layouts only,

performance but motivate slightly presented here
different strategies

The first experiment investigates the effects of varying local density on active vision

and finds that people tend to search sparse groups first and faster. Participants move their

eyes faster, using shorter fixations, when searching sparse groups relative to dense groups

and move their eyes to sparse groups first. Interestingly, when the layouts are of mixed-

density, regardless of whether the the group being searched is sparse or dense, the

participants initially search in a manner similar to when all-sparse layouts are searched.

However, the sparse groups tend to be searched first and when searching dense groups

later in a trial, the participants tend to adopted a strategy similar to that used in the all-

dense layouts that utilize more and longer fixations. Perhaps users have learned over time

that larger fonts, as used in the sparse groups, indicate headlines or headings. Regardless,

these findings suggest that designers should use sparse text for important information that

the users need to find earlier.
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The second experiment investigates the effects of text color on active vision and finds

that people occasionally look at irrelevant text identified by color. In comparison to

layouts where irrelevantly-colored text is absent, visual search is slower when

irrelevantly-colored text is present. Visual search is slowed further as the ratio of

irrelevantly-colored to relevantly-colored text increases. Further, the larger the eye

movement, the more likely the participants are to look at an irrelevantly-colored item, as

is expected with eye movements planned using the reduced resolution and hue sensitivity

of peripheral vision. However, even for the very large eye movements, participants are

more likely to fixate relevantly-colored text, suggesting a degraded but not absent use of

color in the periphery. These findings provide a theoretical and empirical basis for

recommendations on the use of link color: First, we have an active vision explanation for

precisely how the differentiation of visited and unvisited links can benefit a user; the

visited links can largely be ignored as the eyes tend to moved to nearby items where the

color is more readily attained. Second, the differently-colored, unvisited links cannot be

completely ignored; unvisited links should be removed to improve efficiency if layout

consistency is not required for other reasons.

The final experiment investigates the effects of semantic cohesion and group labels

on active vision. When groups of words are semantically cohesive, people appear to

judge the relevance of semantically grouped words with one fixation, much like is seen

when people search layouts in which the groups are labeled. Semantically cohesive or

labeled layouts allow people to find the target faster by discounting more objects per
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fixation than if the layouts are randomly organized. Interestingly, the use of the additional

semantic information does not increase the time required to evaluate the objects in each

fixation. These active vision findings have direct relevance to HCI as follows: When the

space available within an interface is severely restricted (e.g. handheld displays),

removing group labels that indicate category will not necessarily put the user at a

significant disadvantage. If provided with sufficiently cohesive grouping, users can

navigate such layouts as efficiently as if they groups were labeled.

5.2 Summary of Modeling Work

This dissertation presents an active vision model of visual search that accounts for a

wide range of eye movement data. Human data from two tasks were used to develop the

model and the data from these tasks were accounted for in the modeling. The Text­

Encoding Error Model accounted for the local-density task that was presented in the

empirical work section. This modeling showed that fixation durations can be explained

using a process-monitoring strategy to predict when people move their eyes. Additionally,

simulating a small percentage of eye movement patterns that result from misperceived

stimuli (i.e. encoding errors) is a useful, straightforward way of explaining what people

perceive with each fixation. The Process-Monitoring Revisited Model explained the eye

movement data from the CVC search task (Hornof, 2004) with much greater fidelity than

had been done previously. The model showed that where and how far people move their

eyes can be explained well by a model that prefers nearby saccade destinations.
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The resulting active vision model developed and tuned throughout this thesis was

validated by predicting the observed eye movements from the semantic-grouping task

presented in the empirical work section. This active vision model was able to predict

human performance very well for the conditions in which the words were randomly

organized. As expected, the model did not predict the effects of semantic grouping well,

as the model does not yet have a notion of semantic relatedness. However, some aspects

ofthe observed search behavior in the semantically organized layouts were predicted

well, suggesting that the model will be useful in future modeling efforts that will account

for additional factors, like semantics.

The model was incrementally improved based on eye movement analysis and

psychological literature. The eye movement data analysis reported in this thesis is more

detailed than previously reported in the literature to inform the development of cognitive

architecture-based models of visual search (e.g. Fleetwood & Byrne, 2006). The

application of the eye movement analysis was further supplemented by established results

in the psychological literature, such as hypotheses of saccade initiation (Hooge &

Erkelens, 1996), evidence for a constant effective field of view across stimuli density

(Bertera & Rayner, 2000), and evidence for saccades tending to be directed to nearby

locations (Motter & Belky, 1998).

5.3 Contributions to Cognitive Modeling

This dissertation moves the fields of HCr and cognitive science closer to a powerful,

detailed, computational understanding of how people apply their active vision processes
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to visual HCI tasks. This work extends the practice of computational cognitive modeling

by (a) informing the process of developing such computational models by using eye

movement data in a principled manner and (b) addressing the four questions of active

vision for the first time in a computational framework, setting a standard of completeness

for future modeling of visual search in HCr. Critical theoretical contributions were

identified along the way that will be useful to incorporate into future models of visual

search.

The constraints proposed in this research worked well to predict people's ability to

locate a target of visual search. The model addresses the question about what can be

perceived during a fixation by showing that text-encoding errors may do a better job of

explaining the limitations of what information is processed in a fixation than can be done

by varying the effective field of view. It was found that a text-encoding error rate of

roughly 10% helps to accurately predict how quickly people can find a target.

This thesis provides support for the use of a strict process-monitoring saccade

initiation strategy in computational models of visual search. The modeling is relevant to

the issue of when saccades are initiated in that it shows how a relatively straightforward

set of assumptions regarding visual information and ocular motor processing, as built into

a cognitive architecture, lends itself quite well to explaining, and perhaps thus supporting,

a process-monitoring explanation of saccade initiation. This thesis extends existing

theory within EPIC to instantiate the process-monitoring strategy. EPIC embraces the
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notion of transduction time in the various perceptual processors, which is the time for

information to move through a processor and become available to later stages. This thesis

modifies the instantiation of this theory in EPIC by varying the transduction times of

visual properties based on the value of other visual properties or relationship to other

visual objects. This dissertation shows how the timing of this transduction can be used to

explain the observed fixation durations.

Perhaps most important to the prediction of visual search for applications to human­

computer interaction, this dissertation provides a detailed active vision model for

explaining scanpaths. The modeling supports the idea that proximity is an important

factor in predicting where people move their eyes. The model predicts people's saccade

distributions and scanpaths by utilizing only the location of the objects in the layout, a

further contribution to predictive modeling in HCI in that object location is one of the

few visual characteristics that can be automatically translated from a physical device to a

predictive modeling tool.

This thesis shows one important way in which memory for locations may be

integrated between eye movements. The only memory that affects, to any large extent, the

performance of the proposed model is the memory for previously fixated locations. This

need for memory is restricted to those items currently being searched and those regions

(i.e. groups) that have been previously searched.
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The modeling in this dissertation is a candidate computational model of active vision.

Each of the major questions of active vision proposed by Findlay and Gilchrist (2003) are

addressed in this dissertation: What can be perceived in a fixation? When do the eyes

move? Where do the eyes move? And, what information is integrated between eye

movements? Addressing each of these issues resulted in a visual search model that will be

useful to further research in predicting and understanding user behavior in HCI.

5.4 Future Directions

While the progression of models presented in this dissertation is a substantial step

towards a unified theory of visual search for HCI, more work is required before a truly

unified theory of visual cognition is achieved. The proposed model answers questions

important to the study of active vision. However, it does so for a limited domain, that of

structured layouts of text. The proposed model is an excellent start, but more work is

needed.

5.4.1 Integration ofModels ofVisual Search

Currently, models of visual search cannot accurately predict the behavior of users'

visual interaction with the complex visual layouts oftoday's computer applications.

Individual models exist that separately instantiate different strategies that people use

when visually searching. However, a unified visual search theory is needed. Newell

proposed a unified theory of cognition (Newell, 1973), which he described as " ... a single

system [that] would have to take the instructions for each [task], as well as carry out the

task. For it must truly be a single system in order to provide the integration we seek" (p.
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305). His vision of a unified theory of cognition (UTC) has to some extent been realized

in cognitive architectures used to create cognitive models like the one in this dissertation.

However, the independence of the models instantiated in the architectures can have a

decentralizing effect if there is no unification of the theory embedded in the individual

models. Therefore, future work is required to integrate across multiple models, including

models from different cognitive architectures. One future extension of the research in this

dissertation is to investigate methods for integrating the model proposed here with other

disparate models.

5.4.1.1 Integration with Other EPIC Models

Other computational models of visual search have been proposed in EPIC that propose

slightly different answers to some of the questions of active vision. EPIC is conducive to

the modeling of active vision as it emphasizes perceptual and motor processes that are

central to active vision, like the visual processor and ocular motor processor. The

variation in different models is a good thing for a number of reasons. For one, until the

theory is nailed down, the architecture should not unnecessarily restrict the modeling but

should instead leave room for appropriate theoretical exploration. For another, a wide

variety of tasks need to be simulated before a truly comprehensive model can be

developed.

An active area of research using the EPIC cognitive architecture is the investigation of

the perceptual constraints ofthe visual system (Kieras & Marshall, 2006; Kieras, 2003).

Recent modeling efforts have refined EPIC's visual availability functions - the
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equations that detennine what visual properties are available to cognitive processes as a

function of where the object is in the visual field. For example, the default availability

function for text is straightforward: text can be perceived out to 10 of visual angle.

Availability functions are necessary to accurately describe visual search behavior.

Kieras' recent research with availability functions has explained a range of results from

different visual search experiments. The resulting models support the idea that visual

properties, like color and shape, are available according to a quadratic function (an

equation involving two or more variables raised to the second power or less) based on the

eccentricity from the center of fixation and size of the object. The models Kieras

constructed using these quadratic availability functions select saccade destinations at

random from the objects available according to the quadratic availability functions used.

Figure 45 shows possible quadratic, linear, and constant availability functions as a

function of eccentricity only.

Both Kieras's availability functions and the nearest-with-noise strategy proposed in this

thesis can be used to explain people's saccade selection behavior in different tasks.

Further research is required to detennine whether both are necessary to predict observed

scanpaths in visual search, or how the two methods may be integrated, or whether one

strategy subsumes the other. This thesis and other research (Findlay, 1997) has shown that

when people are searching for objects differentiated by color, people are more likely to

fixate on target-colored object regardless of the distance to the object. However, there is

sometimes a preference for nearby objects independent of the identification of the
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Figure 45. Theoretical plots of availability as a function of eccentricity. As objects move
further from the point of gaze, visual features become less available. Zone functions are
all or nothing. Quadratic functions tend to decrease slowly for nearby items and rapidly
for distant items. Linear functions decrease uniformly.

objects' visual features (ibid.). These complementary [mdings may support the need for

both mechanisms. While differences remain between the modeling presented in this

thesis and other models of visual search in EPIC, these differences are reconcilable

through integration and additional empirical investigation. Future research will

investigate integrating the availability functions proposed by Kieras with the saccade

selection strategy proposed in this research. Such integration will be useful for extending

the model proposed in this thesis to simulate active vision for a wider variety of tasks.
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5.4.1.2 Integration with Models a/Semantic Search

The active vision model proposed in this thesis will be improved to account for the

effects of semantics on visual search. While the model was able to explain some of the

eye movement behavior in the Semantic Grouping task, the effects of semantics on

saccade destination selection was not explained.

Research and modeling by Brumby and Howes (2004; 2008) has provided much

insight in to how the semantics can guide visual search. Brumby and Howes (2008)

investigated the effect of word meaning on the visual search of menus. Menu items may

be semantically related to one another to a lesser or greater degree. Additionally, the

target menu item may be semantically related to the search goal to a lesser or greater

degree. Both the semantic relationship between menu items and between the target and

goal can affect visual search. They found that people tend to search fewer items when

distractor menu items are less similar to the goal and when the target is more similar to

the goal. Further, people tend to revisit smaller and smaller groups of menu items as

visual search progresses before selecting a menu item to click on. A model was

constructed to explain the findings in the ACTR cognitive architecture (Brumby &

Howes, 2004). The model used an interdependence a/link assessment search strategy that

accounts for the perceived semantic distance between menu items and the target word.

The strategy contains three key elements: (a) If the perceived semantic distance between

a menu item and the target is close enough, mark the menu item as a potential target.

(b) If the perceived semantic distance between the menu item and the goal is even higher,
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select that menu item as the target. (c) If the currently fixated menu item is not the target,

make another eye movement to an unassessed menu item or to a menu item previously

marked as a potential target.

It would be useful to integrate the Interdependence ofLi~Assessment Model with.

the model proposed in this thesis, as the models have complimentary strengths. The

model proposed in this dissertation performs visual searches for exact targets. The

semantic content of the text being searched does not influence the model's visual search

processes as would be the case for people. The Interdependence of Link Assessment

Model has accounted quite well for the influence of the semantics of text on people's

visual search processes. Conversely, the Interdependence of Link Assessment model uses

an over-simplified scanpath that searches from top-to-bottom in a menu one item at a

time. The model presented here does quite well at predicting how people select saccade

destinations. The integration of these models would benefit predictive modeling in HCI

tasks greatly, as both the location and the content of computer layouts are important

factors of screen design.

5.4.2 Informing the Development ofAutomated Interface Analysis Tools

The aim of all of this research is to provide theoretical underpinnings for automated

interface analysis tools and to provide a useful method of predicting users' gaze

interaction with novel visual displays. Interface designers can use such tools to evaluate

visual layouts early in the design cycle before user testing. Work is required to integrate

the results of this modeling, and future related modeling, into one or more interface
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analysis tools like CogTool (John & Salvucci, 2005) and CORE/X-PRT (Tollinger et aI.,

2005).

At least two directions can be taken to improve the predictive power of CogToo1:

(a) Improve the predictive power of the model presented in this dissertation and (b)

enhance CogTool with a more robust model of visual search based on this model. This

entire dissertation has focused on improving the model. Regarding the second goal, some

progress has already been made, but more is needed. Teo and John (2008) have enhanced

CogToo1-Exp10rer (an extension to CogToo1) to include some aspects of the research

presented here. For example, CogTool-Explorer searches visual objects in an order based

on the eccentricity of the objects relative to one another. However, CogTool-Explorer and

the computational model on which it is partially based, SNIF-ACT (Fu & Pirolli, 2007),

do not embrace many aspects of active vision. These tools do not simulate eye

movements, and incorporate extremely limited simulations of visual perception. For

example, all visual objects on a web page have equal visual saliency regardless of

location on the page. CogTool-Explorer needs a greater integration with the current

model presented in this dissertation to more accurately simulate human visual-perceptual

and ocular-motor processes in order to more accurately predict human visual search

performance.

5.5 Conclusion

To better support users and predict their behavior on potential, future human-

computer interfaces, it is essential that we better understand how people search visual
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layouts. Computational cognitive modeling is an effective means of expanding visual

search theory in HCI, and ultimately will provide a means of predicting visual search

behavior to aid in the evaluation of user interfaces. The experimental results presented in

this thesis provide a better understanding of how text density, color, and word meaning

affect human-computer visual interaction. The computational cognitive modeling that

built upon those experimental results illustrates the efficacy of using eye movements in a

methodical manner to better understand and predict visual search behavior. Additionally,

the results from the modeling solidify and extend an understanding of active vision by

instantiating the theory in a computational model. This instantiation allows us to better

understand (a) the effects and interactions of visual search processes and (b) how these

visual search processes can be used computationally to predict people's visual search

behavior. This research ultimately benefits HCI by giving researchers and practitioners a

better understanding of how users visually interact with computers, and provides a

foundation for tools to predict that interaction.
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APPENDIX A

WORDS USED IN EXPERIMENTS 1 AND 2

age bean box cat cold dart dye
aisle bear boy cattle collar date earth
alley bed bra cave cone dawn east
angle bee brain cell cook day edge
ankle beef brake chain copper decay egg
ant beer brat chair cork deck eight
ape beet bread chalk corn deep elbow
apple beetle breath charm corner deer end
arm bell breeze chart cotton desk essay
army belt brick cheat couch dial face
arrow bet bridge cheek count diet faint
art bill broil chin court dime fall
ash bin broom choir cousm dinner fan
atom birch brush cider cow dirt farm
aunt bird bubble CIgar crawl ditch fat
author birth bump circle cream dive father
autumn blade burn city cnme dog feet
baby block burner clash cross doll felt
back blouse bush clean crow dollar fence
bag blush butter clock crowd dome fight
ball board button cloth crown door figure
band boat cable cloud crumb doorway film
bang body cafe clown cry dot filth
bank boil cake club cube down fire
bar bone calf coach cup dozen fish
bark book camp coal curb drain flag
basin boot cape coast curler dream flame
bass border car coat curve dress flare
bat boss card coffee cut drug flash
bath bottle case coil dad drum flea
battle bow cash com daisy duck float
beach bowl cast coke dance dust flood
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floor guest Ice lane mat nod pIe
flower guide inch lap match noodle pig
flush gun ink laugh mate nose pile
flute guy Iron lawn meal note pill
fog hair itch lawyer meat nun pillow
foil half jail lead medal nurse pm
food hall Jam leader men oak pme
foot ham Jar leaf metal ocean pint-
fork hammer Jaw leak mile office pIpe
form hand Jeep lean milk oil pit
fox harbor jelly leap mme organ plain
frame hat Jersey leather miner ounce plane
frog hate jet leg mink oven plate
frown hawk jewel lens mIrror page play
fruit head job letter mist paint plug
fun heap Jog lever mold paIr plum
fur heart joke life money pale poet
gang heat JOY lift moon palm point
gas heel judge light moose pan pOlson
gate height JUIce lighter moth pants pole
ghost help Jump limb mother paper pond
gift herb JUry limp motor parcel pony
gm hero kettle line mouse park pool
girdle highway key lion mouth party pope
girl hill kick lip mOVIe pass pork
glass hobby kid liquor mud paste post
glove hockey king load mug pea pot
goal hoe kiss lock muscle peach pound
gold hog kitten locker nag pear pour
golf hole knee long nail pearl powder
gown home knife loop name pedal praIse
grape honey knight love narrow pen prayer
graph hood knob lump neck penny pnze
grass hook knuckle lung needle people puddle
grave hom lad mail nerve pepper pump
grief horror lady male nest person pup
gnp horse lake man net pet puppy
groan house lamb map news phone purse
group hunt lamp maple nickel pick quart
guard hurt land march night pickle queen
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race scar sleep staff tear trick wind
rail scare sleeve stain teeth trip WIne
rain school sleigh stair tent truck WIng
ramp sea slice star terror tube wink
rat seam slide state test tune WIre
rear season slip steak thaw tunnel wolf
rent seat slope steam thick turtle womb
rib seed slush steel thief twig wood
nce self smack stem thread uncle wool
riddle sewer smash step three valley work
nm shadow smell stew thrill van worker
nng shallow smile stick throat veIn world
riot shape smoke stone throw VOIce worm
rise shark snail stool thumb vote wrap
nver shed snake stop tide voter wreck
road sheep sneeze store tidy wage yard
robber sheet snow storm tie waist yawn
rock shell soap stout tiger walk youth
rod ship sob stove tin wall zero
roll shirt soccer straw tip war ZIpper
roof shiver sock sugar tire wash zoo
room shock soda suit toad watch
root shoe sofa sum toast water
rope shoot soft summer toe wave
rose shop soil sun ton wax
rough shore song supper tongue wealth
round shot sore surf tool weather
rubber shout sound sweat tooth weed
rug shovel soup sweep top week
ruler shower south sweet touch weight
rum sign space SWIm tough well
sack singer spade table town whale
safe sink spark tail toy wheat
sail skate spear talk track wheel
salt ski spIce tank trail whistle
sauce skin spoke tap train wide
saucer skirt spool tape trash wife
saw skull spoon tar tray WIg
scab sky spray tea tree wild
scale slap square team tribe WIn
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WORDS, CATEGORIES, AND META-GROUPS. .

USED IN EXPERIMENT 3

The words, category labels (italicized), and super categories (bold) used in

experiment 3 are listed below. Note that the super categories were not shown and the

category labels were not italicized in the experiment's layouts.

animals birds tropical fish
farm animals . robin piranhas

cow cardinal angelfish
pIg eagle blowfish
horse bluebird clownfish
sheep sparrow seahorse
goat parrot barracuda
lamb hawk stingray
ox pIgeon starfish
rabbit canary sunfish
bull woodpecker swordfish

wild animals rodents
lion rat
tiger mouse food!
bear squirrel bread
elephant gerbil rye
wolf hamster pumpernickel
boar opossum sourdough
fox chipmunk challah
deer bat roll
cheetah beaver pita
zebra gopher croissant

bagel
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toast apple sucker
biscuit orange mints

banana caramel
dairy pear taffy

milk grape skittles
cheese strawberry jawbreaker
yogurt peach snickers
butter· kiwi
cream mango condiments
eggnog pineapple salt
buttermilk pepper
cheddar food2 sugar
kefir alcohol vanilla
feta beer ketchup

wine lemon
meat vodka barbeque

beef rum mustard
pork gm vmegar
steak whiskey tabasco
veal champagne
hamburger tequila attire
ham liquor clothing
vemson scotch shirt
ribs pants
salami beverage socks
roast water underwear

JUIce hat
vegetables coke sweater

carrot coffee jacket
lettuce tea skirt
broccoli lemonade shorts
corn punch Jeans
celery pepsi
tomato sprite cloth
cucumber shake cotton
potato silk
peas candy polyester
omon chocolate wool

gum rayon
fruits licorice linen
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nylon alto
satin entertainment bass
denim dance tenor
cashmere ballet baritone

SWlllg falsetto
footwear tango operatic

sandals waltz contralto
boots disco mezzo
shoes macarana countertenor
slippers mambo
sneakers lambada media
loafers samba reference
moccaSlllS polka encyclopedia
pumps dictionary
clogs music thesaurus
skates rock journal

rap almanac
cosmetics classical atlas

lipstick Jazz textbook
blush country index
mascara alternative phonebook
eyeliner blues handbook
foundation hiphop
powder folk reading
rouge reggae magazllle
perfume newspaper
lotion instruments pamphlet
gloss plano novel

flute brochure
jewelry drum fiction

necklace saxophone comIC
rlllg trumpet essay
bracelet violin book
earring guitar mystery
watch clarinet
anklet oboe writing
brooch tuba pen
tiara pencil
cufflink singing marker
crown soprano crayon



161

chalk bedroom
highlighter ceiling diseases
paper chimney cancer
ink herpes
eraser religious building leukemia
typewriter church hepatitis

temple alzheimers
communication synagogue diabetes

telephone mosque tuberculosis
letter cathedral malaria
talk chapel hiv
phone shrine parkinsons
fax monastery
internet convent organs
telegram tabernacle heart
mail liver
radio homes lung
pager house kidney

apartment stomach
buildings condominium brain

buildings hut intestine
school dormitory pancreas
skyscraper manSIOn spleen
hospital shack uterus
restaurant igloo
museum trailer body part
mall townhouse leg
hotel arm
warehouse medicine hand
prison medical specialty head
bank pediatrics foot

gynecology toe
buildingpart surgical finger

annex cardiology neck
atrium orthopedics shoulder
attic obstetrics chest
backdoor oncology
balcony urology face part
basement ophthalmology nose
bathroom dermatology eyes
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mouth train stereo
cheeks airplane furnace
ears Jeep computer
lips limousine
eyebrows moped small appliances
forehead toaster
chin boats blender
eyelashes sailboat .mIcrowave

yacht mIxer
transportation battleship JUIcer

auto parts submarine timer
engme rowboat beater
wheel tugboat breadmaker
carburetor cruiseliner crockpot
tire canoe coffeemaker
brake speedboat
muffler barge bathroom fixtures
transmission sink
battery boatparts toilet
radiator sail bath
axle mast shower

bow mIrror
bicycle parts stem light

seat deck faucets
chain hull cabinet
spokes rudder fan
pedal oar
gears anchor furniture
handlebars cabin chair
frame couch
hom table
reflector furnishings bed
bell major appliances desk

refrigerator sofa
vehicles stove dresser

car dishwasher lamp
truck dryer loveseat
bus oven ottoman
van television
motorcycle freezer chemistry
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precious stones electricity cedar
diamond gas palm
ruby coal spruce
emerald oil
sapphire nuclear storm
opal thermal thunder
amethyst ram
pearl earth hail
topaz landscapes hurricane
garnet mountain tornado
jade valley windstorm

hill lightning
metals volcano blizzard

gold canyon sandstorm
silver glacier sleet
steel plateau
Hon cave titles
copper cliff relatives
aluminum island aunt
platinum uncle
tin waterways cousm
lead rIver brother
bronze ocean sister

lake mother
chemical elements stream father

oxygen canal mece
hydrogen sea grandma
nitrogen pond grandpa
helium creek
carbon channel nonrelatives
sulfur brook friend
sodium boyfriend
lithium trees teacher
potassium oak girlfriend
phosphorus pme acquaintance

maple boss
energy source birch enemy

solar redwood neighbor
hydro willow mentor
wind elm roommate
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tweezer matches
military title laser map

general clamp trailmix
sergeant forceps raincoat
lieutenant gauze
captain stethoscope
private synnge
colonel suture
major
corporal garden tools
commander hoe
officer shovel

rake
occupation spade

lawyer trowel
engineer weeder
accountant lawnmower
banker rototiller
professor pots
psychiatrist sprinkler
artist
actor kitchen utensil
secretary fork
manager knife

spoon
royalty spatula

king ladle
queen plate
pnnce bowl
pnncess tongs
duke cup
duchess whisk
jester
lord hiking equipment
knight backpack
lady rope

tools tent
surgical instrument compass

scalpel canteen
needle pick
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APPENDIXC

PRODUCTION RULES FOR THE FINAL MODEL

The following are the EPIC production rules, non-default parameters, initial memory

contents, and well known (i.e. named) locations for the final model discussed in

Chapter IV.

(Define Parameters

II The eccentricity fluctuation factor affects
II saccade destination selection.
(Eye Eccentricity_fluctuation_factor Normal When_used 1 0.35)

II Reduce ocular movement preparation cost to zero
(Ocular Feature_time Uniform When_used 0 0.0)

II Reduce manual movement preparation cost to zero
(Manual Feature time Uniform When used 0 0.0)

(Visual_perceptual_processor Text_recoding_failure_rate
Normal When_used 0.09 0.0)

(Visual_perceptual_processor Recoding_time Text 100)

(Eye Availability Shape Zone 49 7.5)
(Eye Availability Text Zone 49 1.0)

(Visual_perceptual_store property_decay_time Normal When used 50 0)

(Define rnitial_memory_contents
(Goal Do Visual_Search Task)
(step Pretrial Tag Precues)
(Tag Cursor Cursor)

(Define Named location Away_from_precue 0.0 0.0)
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///////////////////////////////////////////////////////////////////////
// PRE-SEARCH STRATEGY PRs
// The following rules for response to the precue.
///////////////////////////////////////////////////////////////////////

// Tag all precue objects for examination
(Tag-all-precue-objects-for-examination
IF
(

(Goal Do visual_Search Task}
(Step Pretrial Tag Precues)
(Visual ?Object Detection Onset)
(Not (Tag ?Object Cursor»

)
THEN
(

(Delete (Step Pretrial Tag Precues»
(Add (step Pretrial Look_at Any_Precue»
(Add (Tag ?Object Precue_to_be_examined»

) )

// Look at any random, unvisited precue object.
(Look-at-any-precue-object
IF
(

(Goal Do visual_Search Task)
(Step Pretrial Look_at Any_Precue)
(Tag ?Object precue_to_be_examined)
(Visual ?Object Eccentricity ?ecc)
(Motor Ocular Modality Free)

)
THEN
(

(Delete (Step Pretrial Look_at Any_Precue»
(Add (Step Pretrial Memorize Precue»

(Send_to_motor Ocular Perform Move ?Object)
) )

// If looking at the precue, memorize it unless the text is unknown,
// which can happen because of text recoding failures.
(Memorize-and-point-to-precue
IF
(

(Goal Do Visual_Search Task)
(Step Pretrial Memorize Precue)

(Tag ?Object precue_to_be_examined)
(visual ?Object Text ?Text)



(Not (visual ?Object Left_of ?Anything»
(Not (Visual ?Object Right_of ?Anything»

II If the text is unknown, this object
II will be revisited later.
(Not (Visual ?Object Text Unknown»

)
THEN
(

(Delete (Step pretrial Memorize Precue»
(Add (Step Pretrial Look_at Any_precue»
(Delete (Tag ?Object Precue_to_be_examined»

(Add (Tag Target_Text ?Text»

(Add (Tag ?Object precue_Object»

(Send_to_motor Manual Perform Point ?Object)

»

II If looking at the precue label, memorize it
(Memorize-target-group-label-in-precue
IF
(

(Goal Do Visual_Search Task)
(Step Pretrial Memorize Precue)

(Tag ?Object precue_to_be_examined)
(Visual ?Object Text ?Text)
(visual ?Object Left_of ?Anything)

II If the text is unknown, this object
II will be revisited later.
(Not (Visual ?Object Text Unknown»

)
THEN
(

(Delete (Step Pretrial Memorize Precue»
(Add (Step Pretrial Look_at Any_Precue»
(Delete (Tag ?Object precue_to_be_examined»

(Add (Tag ?Object precue_Label_Object»

»

II If looking at a precue object and the text is unknown, look at
II another object.
II Note: Since an objects text will remain unknown until the model
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II looks away from the object, this rule moves the eyes to an arbitrary
II named location so that the precue text will eventually be known.
II This does not affect the model's predictions as this occurs before
II search begins.
(Skip-Unknown-precue-Object
IF
(

(Goal Do visual_Search Task)
(step Pretrial Memorize Precue)

(Motor Ocular Modality Free)

(Tag ?Object precue_to_be_examined)
(visual ?Object Text Unknown)

)
THEN
(

(Delete (Step Pretrial Memorize Precue»
(Add (Step Pretrial Look_at Any_Precue»

(Send_to_motor Ocular Perform Move Away_from-precue)

»

II The precue stage is over. Proceed with the timed portion of the
II trial. If the eyes are not on the precue, move them back to the
II precue.
(All-precue-objects-are-examined-so-proceed-with-trial
IF
(

(Goal Do Visual_Search Task)
(step Pretrial Look_at Any_Precue)
(NOT (Tag ??? Precue_to_be_examined»

(Tag ?Object Precue_Object)

(Motor Ocular Processor Free)
)
THEN
(

(Send_to_motor Ocular Perform Move ?Object)

(Delete (Step Pretrial Look_at Any_Precue»
(Add (Step Pretrial Click Precue»

»

II Start trial.
II processor to
II to pre-trial
II memorize the

Have the model wait long enough for the ocular motor
be free, to make sure the next rule is not delayed due
activity. The subject can wait here anyway as they
precue.
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// This does not affect the search time.
(punch-Mouse-Button-To-Show-Layout

IF

(Goal Do Visual_Search Task)
(Step Pretrial Click Precue)

(Motor Ocular Processor Free)
(Motor Manual Processor Free)

)

THEN
(

(Delete (Step Pretrial Click Precue))
(Add (Step Move»

// A location to move the eyes not been selected
(Add (Tag nothing Selected))
(Add (Tag nothing Current_Group»

(Send_to_motor Manual Perform Punch Bl Right Index)

///////////////////////////////////////////////////////////////////////
// VISUAL SEARCH STRATEGY 'DAEMON' RULES
// These are PRs common to all strategies that occur at any time,
// largely for the maintenance of 'tags'
///////////////////////////////////////////////////////////////////////

// Decide to remove the group identified tags from all groups, except
// the currently fixated group.
// Note: This PR will fire every other cycle when there is only one
// group present. However, in that case, this PR only triggers a rule
// that removes the step added in this PRo See the PR 'Remove-Reset­
// Group-Step'
(Decide-to-Reset-Group-Identified-Tags

IF
(

(Goal Do Visual_Search Task)

// If not already resetting the tags
(Not (Step Reset Identified_tags)

// and not if there is only one group in the layout
(Not (Tag Do_Not Retag))

// If just one "unidentified" group remains
(Visual ?Unidentified_Group Object_Type Group)
(Not (Tag ?Unidentified_Group Object_Identified))



)
THEN
(

(Add (Step Reset Identified_tags»

II Remove all group object_identified tags
(Reset-Group-Identified-Tags

IF
(

(Goal Do visual_Search Task)
(step Reset Identified_tags)

(Visual ?Object Object_Type Group)
(Tag ?Object Object_Identified)

)
THEN
(

(Delete (Tag ?Object Object_Identified»
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II Remove the step to reset group identified tags
II Note: This step must be separate from the PR that removes the tags
II since there may be only one group in the layout, in which case the
II PR that resets the tags will not fire.
(Remove-Reset-Group-Step

IF
(

(Goal Do Visual_Search Task)
(Step Reset Identified_tags)

)
THEN
(

(Delete (Step Reset Identified_tags»

II As the model moves to other groups, there is no need to remember
II which objects and labels have been identified in previous groups.
(Reset-Object-Identified-Tags

IF
(

(Goal Do Visual_Search Task)

II Find groups that have been identified
(Tag ?Group Object_Identified)
(visual ?Group Object_Type Group)
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II Find identified objects in the identified groups
(Visual ?Object In_Group ?Group)
(Tag ?Object Object_Identified)

)

THEN
(

(Delete (Tag ?Object Object_Identified))

II If the text of an object is perceived, mark it as identified if the
II object is in the currently selected group. This rule will only apply
II to group labels and menu item objects, as they are the only objects
II that have both text and are in a group.
(Mark-Objects-as-Identified

IF
(

(Goal Do Visual_Search Task)

II But not during the pretrial stages
(Not (step Pretrial ??? ???))

II Find the selected group
(Tag ?Selected_Object Selected)
(visual ?Selected_Object In_Group ?Selected_Group)

II Tag objects in the selected group
(Visual ?Object Text ???)
(Visual ?Object In_Group ?Selected_Group)

II It is not necessary that the object has
II not been identified before,
II but it makes the model easier to debug
II if this rule only fires for those
II that have not been identified before.
(Not (Tag ?Object Object_Identified))

)

THEN
(

(Add (Tag ?Object Object_Identified))

II When a new group is visited, mark the previously visited group as
II "identified"
(Mark-Group-as-Identified

IF

(Goal Do Visual Search Task)
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// Get the group selected for fixation
(Tag ?Selected_Object Selected)
(Visual ?Selected_Object In_Group ?Selected_Group)

// Get the "current group"
(Tag ?Current_Group Current_Group)

// If the current group and fixated group are different
(Different ?Current_Group ?Selected_Group)

)
THEN
(

(Add (Tag ?Current_Group Object_Identified))

(Delete (Tag ?Current_Group Current_Group))
(Add (Tag ?Selected_Group Current_Group))

///////////////////////////////////////////////////////////////////////
// NOMINATE PRODUCTION RULES
// This is the first step in the of nominate-then-move search strategy.
// Each strategy is represented by a set of PRs.
///////////////////////////////////////////////////////////////////////

// LABELED LAYOUT NOMINATIONS

// Nominate the labels of all groups that have not been identified
// (i.e. fixated), if currently fixating a label, the target group has
// not been found
(Nominate-Labeled-Any-Direction-Unidentified-Labels

IF
(

(Goal Do Visual Search Task)
(step Nominate)

// If not currently reseting group identified tags
(Not (Step Reset Identified_tags))

// Once the eyes have stopped moving
(Motor Ocular Modality Free)

// Only if the target group has not been found
(Not (Tag ??? Target_Group))

// Nominate all group labels of unvisited groups, except
// for a group label selected for fixation
(Visual ?Nominate_Label Object_Type Group_Label)
(Visual ?Nominate_Label In_Group ?Group)
(Not (Tag ?Group Object_Identified))
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(Not (Tag ?Nominate Label Selected»
)
THEN
(

(Add (Tag ?Nominate Label Nominee Label»

II Nominate group labels that have not been identified, if currently
II fixating a label and there was an recoding error with the target
II group label.
II Note: The only time other group labels are *not* nominated is when
II the target group label has been correctly identified.
(Nominate-Labeled-Any-Direction-Target-GrOup-Label-Unknown

IF
(

(Goal Do Visual Search Task)
(Step Nominate)

II If not currently reseting group identified tags
(Not (Step Reset Identified_tags»

II Once the eyes have stopped moving
(Motor Ocular Modality Free)

II If the group label text was 'unknown'
(Tag Target_GrOup_Label Unknown)

II Nominate all group labels of unvisited groups, except for a
II group label selected for fixation
(Visual ?Nominate_Label Object_Type Group_Label)
(Visual ?Nominate_Label In_Group ?Group)
(Not (Tag ?Group Object_Identified»
(Not (Tag ?Nominate Label Selected»

)
THEN
(

(Add (Tag ?Nominate Label Nominee Label»

II Nominate all unidentified non-label objects in the currently fixated
II group, if this is a labeled layout, in anticipation of the fixated
II group being the target group.
(Nominate-Labeled-All-Current-Group-Objects-Unidentified

IF
(

(Goal Do Visual Search Task)
(step Nominate)

II If not currently reseting group identified tags



(Not (Step Reset Identified_tags»

II Once the eyes have stopped moving
(Motor Ocular Modality Free)

II Only if this is a labeled layout
(Visual ??? Object_Type Group_Label)

II Nominate all unidentified objects in the selected group
(Visual ?Nominate_word Object_Type Object)
(Not (Tag ?Nominate_word Object_Identified»
(Tag ?Selected_Object Selected)
(Visual ?Selected_Object In_GrOup ?Selected_Group)
(Visual ?Nominate Word In_GrOup ?Selected_Group)

)
THEN
(

(Add (Tag ?Nominate Word Nominee Object»

II UNLABELED LAYOUT NOMINATIONS

II Nominate all unidentified menu objects in unidentified groups
(Nominate-Unlabeled-All-Unidentified

IF

(Goal Do Visual Search Task)
(Step Nominate)

II If not currently reseting group identified tags
(Not (Step Reset Identified_tags»

II Once the eyes have stopped moving
(Motor Ocular Modality Free)

II Only if the target text has not been found
(Not (Tag Target_Object ?Target_Object»

II Only if this is an unlabeled layout
(Not (Visual ??? Object_Type Group_Label»
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II Nominate unfixated, unidentified objects in unvisited groups
(Visual ?NOminate_Word In_Group ?Nominate_Group)
(Not (Tag ?Nominate_Word Object_Identified»
(Not (Tag ?Nominate_Group Object_Identified»
(Not (Visual ?Nominate_Word Text ???»

II And, the word is not "too close" to where the model was just
II looking
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(Greater_than ?Ecc 1.0)
)
THEN
(

(Add (Tag ?Nominate Word Nominee Object))

// Control PR for the labeled strategy. All rules in the labeled
// strategy fire after the eyes stop moving from the previous move
// step.
(Nominate-Control

IF
(

(Goal Do Visual Search Task)
(step Nominate)

// If not currently reseting group identified tags
(Not (Step Reset Identified_tags))

// Once the eyes have stopped moving
(Motor Ocular Modality Free)

)
THEN
(

(Delete (Step Nominate))
(Add (Step Move))

///////////////////////////////////////////////////////////////////////
// MOVE PRODUCTION RULES
// This is the second step in the "search iteration" of nominate-move.
// The move rule to fire is chosen based on what has been nominated.
// If nothing has been nominated, the default move rule applies.
// Note: When the trial starts, move is the first step, not nominate.
///////////////////////////////////////////////////////////////////////

// Select the nearest nominated label if the target label has not been
// found and the text of the currently fixated label was identified
// properly.
(Move-to-Labeled-Strategy-Label-Nominee-Label-Known

IF
(

(Goal Do Visual Search Task)
(Step Move)

// When the eyes are free



(Motor Ocular Processor Free)

II Only if the target group label is not being fixated
(Tag Target_Group_Label_Text ?T)
(Tag ?Selected_Object Selected)
(Not (visual ?Selected_Object Text ?T))

II After the selected text is seen and known
(Visual ?Selected_Object Text ???)
(Not (Visual ?Selected_Object'Text Unknown))

II Select the nearest nominated label
(Tag ?Selected_Word Nominee Label)
(Not (Visual ?Selected_Word Text ???))
(Visual ?Selected_word Eccentricity ?ecc)
(Least ?ecc)

)

THEN
(

(Send_to_motor Ocular Perform Move ?Selected_Word)

(Add (Tag ?Selected_Word Selected))
(Delete (Tag ?Selected_Object Selected))

(Delete (Step Move))
(Add (Step Nominate))

II The model "believes" the target group label may have just been
II found. That is, when the label is unknown, the currently fixated
II group is always searched.
(MOve-to-Labeled-Strategy-Object-Nominee-Label-Unknown

IF
(

(Goal Do visual Search Task)
(Step Move)

II When the eyes are free
(Motor Ocular Processor Free)

II After the selected text is seen and unknown
(Tag ?Selected_Object Selected)
(Visual ?Selected_Object Text Unknown)

II Select the nearest group object
(Tag ?Selected_Word Nominee Object)
(Not (Visual ?Selected_Word Text ???))
(Visual ?Selected_Word Eccentricity ?ecc)
(Least ?ecc)
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)
THEN

(Send_to_motor Ocular Perform Move ?Selected_Word)

(Add (Tag ?Selected_Word Selected))
(Delete (Tag ?Selected_Object Selected))

(Delete (Step Move))
(Add (Step Nominate))
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II The model "believes" the target group label may have just been
II found. This rule also adds a tag to indicate that the model may be
II incorrect in it's "belief" that the target label has been found.
(Move-Target-Group-Possibly-Found

IF

(Goal Do Visual Search Task)
(Step Move)

II When the eyes are free
(Motor Ocular Processor Free)

II After the selected text is seen and unknown
(Tag ?Selected_Object Selected)
(Visual ?Selected_Object Text Unknown)

II Only if the model "believes" the unknown label is the target
II group
(Tag Unknown Is_Target)

II Get the "target" group
(Visual ?Selected_Object In_Group ?Target_Group)

II The model does not already think the target group has been
II found
(Not (Tag ??? Target_Group))

)

THEN

(Add (Tag ?Target_Group Target_Group))

II Add a tag representing that the model may have some
II reservation that the correct group label was fixated.
(Add (Tag Target_Group_Label Unknown))

II The target group label was just found



(Move-to-Nearest-Object-Nominee-Target-Group-Found
IF
(

(Goal Do Visual Search Task)
(step Move)

II When the eyes are free
(Motor Ocular Processor Free)

II A label is being fixated
(Tag ?Selected_Object Selected)
(Visual ?Selected_Object Object_Type GrOup_Label)

II If the selected text is the target group label and was not
II identified in a previous round
(Not (Tag ??? Target_Group»
(Tag Target_Group_Label_Text ?T)
(Visual ?Selected_Object Text ?T)

II Get the target group
(Visual ?Selected_object In_Group ?Target_Group)

II Select the nearest group object
(Tag ?Selected_Word Nominee Object)
(Not (Visual ?Selected_Word Text ???»
(Visual ?Selected_word Eccentricity ?ecc)
(Least ?ecc)

)
THEN
(

(Send_to_motor Ocular Perform Move ?Selected_Word)

(Add (Tag ?Selected_word Selected»
(Delete (Tag ?Selected_Object Selected»

(Add (Tag ?Target_Group Target_Group»

(Delete (Step Move»
(Add (Step Nominate»

II If there are menu object nominees, select the nearest.
(Move-to-Nearest-Object-Nominee

IF
(

(Goal Do Visual Search Task)
(step Move)

II When the eyes are free
(Motor Ocular Processor Free)
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II Only if the target text has not been found
(Not (Tag Target_Object ???»
(Tag Target_Text ?Target_Text)
(Not (visual ?Target_Object Text ?Target_Text)

(Visual ?Target_Object Object_Type Object»

II After the selected text is seen
(Tag ?Selected_Object Selected)
(visual ?Selected_Object Text ???)

II And there are no label nominations
(Not (Tag ??? Nominee Label»

II Select the nearest nominated menu object whose text has not
II been identified
(Tag ?Selected_Word Nominee Object)
(Not (Visual ?Selected_Word Text ???»
(visual ?Selected_word Eccentricity ?Ecc)
(Least ?Ecc)

II Get the old selected word
(Tag ?Old Selected)

)
THEN
(

(Send_to_motor Ocular Perform Move ?Selected_Word)

(Add (Tag ?Selected_Word Selected»
(Delete (Tag ?Old Selected»

(Delete (Step Move»
(Add (Step Nominate»

II Default movement
II This rule fires only if there are no nominations. If there are no
II nominations, then there are no objects to move the eyes to and the
II target
II has not been found yet. So, restart search by removing all object
II identified tags.
II Note: This will most likely only occur when there is more than one
II group. If there is more than one group, the object identified tags
II for menu objects are "reset" when moving to another group.
(Move-Default

IF
(

(Goal Do Visual Search Task)
(Step Move)
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II When the eyes are free
(Motor Ocular Processor Free)

II Only if the target text has not been found
(Not (Tag Target_Object ???))
(Tag Target_Text ?Target_Text)
(Not (Visual ?Target_Object Text ?Target_Text)

(Visual ?Target_Object Object_Type Object))

II After the selected text is seen
(Tag ?Selected_Object Selected)
(Visual ?Selected_Object Text ???)

II And there are no nominations
(Not (Tag ??? Nominee ???))

(Tag ?object Object_Identified)
)
THEN
(

(Delete (Tag ?object Object_Identified))

(Delete (Step Move))
(Add (Step Nominate))

II First movement
II This rule is identical to the default movement rule except that the
II condition for identification of the saccade destination text has
II been replaced by the condition for the selected of "nothing." This
II is because, when the eyes first move, there is no previous saccade
II and therefore no text in the selected saccade destination. This rule
II cannot be consolidated with the default move rule, because with the
II exception of the first eye movement, the text of the saccade
II destination must be identified.
(Move-First

IF
(

(Goal Do Visual Search Task)
(Step Move)

II When the eyes are free
(Motor Ocular Processor Free)

II This is the first eye movement
(Tag nothing Selected)

II Select from all objects
(Visual ?Selectee Word In_Group ???)



(Visual ?Selectee_Word Eccentricity ?ECC)

II Except the closest objects
(Greater_than ?Ecc 1.0)

II Select the nearest such word
(Least ?ECC)

II Get the old selected word
(Tag ?Old Selected)

)

THEN
(

(Send_to_motor Ocular Perform Move ?Selectee_Word)

(Add (Tag ?Selectee_Word Selected))
(Delete (Tag ?Old Selected))

(Delete (Step Move))
(Add (Step Nominate))

II Clean up nominations from the last nomination step
(Move-Clean-Up-Nominations

IF
(

(Goal Do Visual Search Task)
(Step Move)

II After the selected text is seen
(Tag ?Selected_Object Selected)
(Visual ?Selected_Object Text ???)

II For all nominations
(Tag ?Nominee Nominee ?Nomination_Type)

)

THEN
(

(Delete (Tag ?Nominee Nominee ?NOmination_Type))

II Clean "Unknown is target" tag
(MOVe-Clean-Up-Unknown_Is_Target

IF

(Goal Do visual Search Task)
(step Move)

II After the selected text is seen

181



182

(Tag ?Selected_Object Selected)
(Visual ?Selected_Object Text ???)

(Tag Unknown Is_Target)
)
THEN
(

(Delete (Tag Unknown IS_Target»

// Clean up the Target_Group_Label Unknown tag
(Move-Clean-Up-Target_Group_Label-Unknown

IF
(

(Goal Do Visual Search Task)
(Step Move)

// After the selected text is seen
(Tag ?Selected_Object Selected)
(Visual ?Selected_Object Text ???)

(Tag Target_Group_Label Unknown)
(Tag ?group Target_Group)

)
THEN
(

(Delete (Tag Target_Group_Label Unknown»
(Delete (Tag ?group Target_Group»

///////////////////////////////////////////////////////////////////////
// END OF ALL STRATEGIES
// There are a couple of steps at the end that are common to all
// strategies.
///////////////////////////////////////////////////////////////////////

// The target has been found in an unlabeled layout. Move the eyes and
// cursor to the target.
(Move-Gaze-and-Cursor-to-Target-Unlabeled

IF

(Goal Do Visual Search Task)
(Step Move)

(Motor Ocular Processor Free)
(Motor Manual Processor Free)

// The layout is unlabeled
(Not (Visual ??? Object_Type Group_Label»



II After the selected text is seen
(Tag ?Selected_Object Selected)
(Visual ?Selected_Object Text ???)

(Tag Target_Text ?Target_Text)
(Visual ?Target_Object Text ?Target_Text)
(Visual ?Target_Object Object_Type Object)

)
THEN
(

II Clean up potential remaining steps
(Delete (Step Move»
(Delete (Step Reset Identified_tags»

(Add (Step Punch Mouse Button»

(Add (Tag Target_Object ?Target_Object»

(Send_to_motor Ocular Perform Move ?Target_Object)
(Send to motor Manual Perform Point ?Target_Object)

II The target has been found in a labeled layout. Move the eyes and
II cursor to the target.
(Move-Gaze-and-Cursor-to-Target-Labeled

IF
(

(Goal Do Visual Search Task)
(Step Move)

(Motor Ocular Processor Free)
(Motor Manual Processor Free)
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II Only select from non-label objects' text if the target group
II has been found
(Tag ??? Target_Group)

II After the selected text is seen
(Tag ?Selected_Object Selected)
(Visual ?Selected_Object Text ???)

(Tag Target_Text ?Target_Text)
(Visual ?Target_Object Text ?Target_Text)
(Visual ?Target_Object Object_Type Object)

)
THEN
(

II Clean up any remaining steps
(Delete (Step Move»



(Delete (step Reset Identified_tags))

(Add (Step Punch Mouse Button))

(Add (Tag Target_Object ?Target_Object))

(Send_to_motor Ocular Perform Move ?Target_Object)
(Send_to_motor Manual Perform Point ?Target_Object)

II Click on the target
(punch-Mouse-Button-On-Target

IF
(

(Goal Do visual_Search Task)
(Step Punch Mouse Button)
(Motor Manual Processor Free)
)

THEN
(

(Send_to_motor Manual Perform Punch Bl Right Index)
(Delete (Step Punch Mouse Button))
(Add (Step Pretrial Tag Precues))
(Add (Step CLEANUP))

)

II Clean up whatever needs to be cleaned up after the response
(Cleanup-All-Tags-Except-Cursor
IF
(

(Goal Do Visual_Search Task)
(step CLEANUP)
(Tag ?x ?Y)
(NOT (Tag ?X Cursor))

)
THEN
(

(Delete (Step CLEANUP))
(Delete (Tag ?X ?Y))

) )

184
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