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Abstract

We examine the nonlinear model z; = EiF(x¢41). Markov SSEs
exist near an indeterminate steady state, & = F'(z), provided |F"(Z)| >
1. Despite the importance of indeterminacy in macroeconomics, ear-
lier results have not provided conditions for the existence of adaptively
stable SSEs near an indeterminate steady state. We show that there
exist Markov SSEs near & that are E-stable, and therefore locally sta-
ble under adaptive learning, if F'(%) < —1.
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1 Introduction

Existence of stationary sunspot equilibria (SSEs) has received widespread
attention since the initial investigations of (Shell 1977), (Azariadis 1981) and
(Cass and Shell 1983).! An important case of SSEs are those that occur
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'Recent surveys are provided by (Chiappori and Guesnerie 1991) and (Guesnerie and
Woodford 1992).



near an “indeterminate” steady state, i.e. a steady state such that there
exists a continuum of perfect foresight paths converging to it. (Chiappori,
Geoffard, and Guesnerie 1992) show for a general class of models that a
continuum of finite state Markov SSEs invariably exists in any neighborhood
of such a steady state. The case of indeterminate steady states is also of
particular interest since it is the starting point for the current generation of
macroeconomic models based on self-fulfilling prophecies. This recent body
of literature is surveyed in (Benhabib and Farmer 1999) and (Farmer 1999).

In the context of the standard Overlapping Generations model (Woodford
1990) raised the issue of whether agents would be able to coordinate on SSEs,
if they followed adaptive learning rules, and showed convergence to some SSE
when the steady state is indeterminate. Woodford’s argument was based on
global analysis using the index number theorem of Poincare-Hopf and the
structure of the invariant set under learning dynamics. This approach does
not provide any information about the location of the stable sunspots and
in particular about whether the SSEs near the steady state are stable or
unstable under learning.

Analysis of local stability of finite state SSEs under adaptive learning for
a general class of models was undertaken in (Evans and Honkapohja 1994).2
Convergence conditions under adaptive learning dynamics were shown to be
governed by Expectational Stability (or “E-stability”) conditions. It was also
shown that sharp stability results are available for SSEs near deterministic
cycles or near a set of distinct steady states.®> However, in the case of SSEs
near a single steady state, the stability results have heretofore remained
incomplete.

In this paper we complete the analysis of adaptive stability of SSEs near
a single steady state in the general univariate model z; = E;F(z4,1).* For
this model indeterminacy of a steady state Z corresponds to |F'(&)| > 1. In
(Evans and Honkapohja 1994) we showed that if F'(z) > 1 then every finite
state SSE in a small enough neighborhood of # is unstable under learning.
However, stability for the case F'(Z) < —1 remained an open issue. Using

2Part IV of (Evans and Honkapohja 2001) provides an overview of learning of rational
expectations equilibria in nonlinear models.

3(Howitt and McAfee 1992) and (Evans, Honkapohja, and Romer 1998) exploit this
type of result for the case of multiple steady states.

4Eductive approaches can also be used to investigate coordination on rational expecta-
tions equilibria. Eductive stability of SSEs in an overlapping generations model is exam-
ined in (Desgranges and Negroni 2001).



local bifurcation theory we are here able obtain sharp stability results for
this remaining case: there always exist nearby Markov SSEs that are stable
under adaptive learning if F'(z) < —1.

2 The Framework

We look at the univariate model
v = E{F(vs1), (1)

where E;F(x:y1) denotes the expectation of F'(x;y1) held by agents at time
t. Under the rational expectations assumption E; F(z;11) = EF(2441), the
true mathematical conditional expectation of F'(z;11) based on information
at time t. We assume throughout that there exists a steady state & = F(z),
that F'is three times continuously differentiable in a neighborhood of z, that
F'(z) # 0, and that F"(2) #0.°

For the purposes of this paper it will be sufficient to examine 2-state SSEs.
We therefore focus on this case, commenting where appropriate on how our
results extend to the more general finite state case. A two-state Markov SSE
is a stochastic process for z;, depending on an exogenous two-state Markov
process s; with transition probability matrix II = (m;;), which satisfies the
above equation (1) with rational expectations. Let the two states of s; take
the values s; € {1,2}. Then an SSE takes the form

Ty = I ifSt :i, for ¢ = 1,2,
with Z; # Z» and satisfying

T = 7T11F(f1) + (1 — 7T11)F(f2), (2)
Ty = (1 — 7T22)F(j1) + 7T22F(.’f‘2).

It is well known that such solutions exist in a neighborhood of the steady
state & when |F'(z)| > 1. Existence and characterization of SSEs has been
examined using a variety of approaches. For a review, see (Chiappori and
Guesnerie 1991). As noted above, the stability results for the SSEs near an
indeterminate steady state have been incomplete, even though indeterminate
steady states and nearby SSEs play a major role in the literature.

5The linear case is analyzed at length in a companion paper (Evans and Honkapohja
2002).



2.1 Adaptive Learning

To analyze the system under adaptive learning, we consider agents who be-
lieve they are in a 2-state SSE with unknown values to be taken by z;,1 in
the two sunspot states. A standard estimator for these values is given by
state contingent averaging, i.e. they are estimated as the average past value
taken by x; in each state.

Formally, let ¢, = (¢y,, ¢o,) be the estimates of the values that z; takes
in states 1 and 2 of the sunspot. Let also ¢;, = 1 if s; = j and 0 otherwise
be the indicator function for state j of the sunspot. Clearly, ¥y, =1 — 1y,.
Then we can write the learning rules based on state-contingent averaging in
the following form:

ijt = qu,tfl + t_lfgbj,tfl%'_,tl—l(xtfl - qu,tfl +ét1)
qit = Qjt—1+ t_l(@/)j,t—1 — Qjt1)
= Yy[mul(gy) + (1= 711) F(dg)] + ou[(1 = ma2) F(yy) + Taa F(¢y)]

for j = 1,2. We note here that in the learning rules agents are assumed to
use observations only through period ¢t — 1.

These equations are interpreted as follows. tg;; 1 is the number of times
state j has occurred up to time t—1. The second equation is the recursion for
the fraction of observations of state j. The first equation is then a recursive
form for the state averages, including a small measurement or observation
error £;,_1.% Finally, the third equation gives the temporary equilibrium for
the model, since the right-hand side is the expectation of the value of F'(z;,1)
given the forecasts ¢;;. Note also that, for the sake of simplicity, the agents
are assumed to know the transition probabilities ;.

As established in the earlier literature, stability under adaptive learning
is governed by E-stability. For the current framework the connection is es-
tablished in Section 5 of (Evans and Honkapohja 1994), see also (Evans and
Honkapohja 2001), Chapter 12. In the remainder of this paper we there-
fore derive E-stability results since these are necessary and sufficient for local
stability under adaptive learning.

bg, is assumed to be iid mean zero and to have a bounded support. The measurement

error is needed only for the instability result, see (Evans and Honkapohja 1994) for further
details.



2.2 E-Stability

E-stability is defined in terms of the mapping from a corresponding perceived
law of motion (PLM) to the implied actual law of motion (ALM). At this
stage it is convenient to switch back to the notation in which z; denotes the
perceived value of the endogenous variable in sunspot state i. The PLM then
takes the form x; 1 = x; if 5411 = ¢, for2 = 1, 2. Under the PLM, expectations
are calculated to be Ef F(x;11) = mj F(x1) + mioF(x2) if s = i. From (1) we
then obtain the implied actual law of motion x; = m; F'(z1) + miF (x9), for
st = 1, so that the mapping from PLM to ALM parameters is given by

r(5)=n(F )

The differential equation defining E-stability is

d

#(n)-r(2)-(2)

dr \ T2 T2 T2
where 7 denotes notional or virtual time. If the equilibrium point (z1, Z2)" is
locally stable under this differential equation then it is said to be E-stable.
Note that the equilibria of this differential equation consist of the steady

state (Z,z)" as well as the possible SSEs.
Writing the differential equation explicitly

i I _ T11 1-— T11 F(l’1) . I (3)
dr \ X2 1 — 7o 29 F(x2) T2 )’
E-stability conditions are obtained by linearizing this system at the equilib-

rium. Thus, an SSE (%, Z2) is E-stable if the eigenvalues of the matrix

T I—m F,(@)
,r -1 4
(1—71’22 99 )(F(CCQ) ()
have negative real parts. Here I is the 2 x 2 identity matrix.

For SSEs nearby a steady state some useful results are implied by analysis
of the linearization at the steady state, i.e.

( o > — (F/(#)11 - 1) < o > + ( &gzizzi ) | )



where w; = x; — & and w; = dw;/dr, and where W;(w;,ws) denote the
nonlinear parts, ¢ = 1,2. Since Il is a probability matrix, its eigenvalues are
1 and 71 + w99 — 1. Thus the eigenvalues of the linear map are F'(z) — 1
and F'(Z)(m11 + m2 — 1) — 1. We immediately have the following result by
continuity of eigenvalues:

Proposition 1 If F'(Z) > 1, then every SSE sufficiently near the steady
state fails to be E-stable.

This result was obtained earlier in (Evans and Honkapohja 1994). We remark
that the proposition in fact holds for all K-state Markov SSEs, with K > 2,
since every K x K probability matrix has an eigenvalue of 1.

On the other hand, if F'(Z) < —1 then the existence or non-existence
of E-stable SSEs is not obvious. While the E-stability condition based on
(4) can still be used to check whether a given SSE near z is E-stable, there
is no simple way to determine whether stable cases exist. Based on the
linearization at the steady state, the eigenvalues will be near F'(z) — 1 and
F'(2)(m11 + ma2 — 1) — 1. Clearly, the root near F'(%) — 1 is stable, but
the possible values for the other root are not self-evident. In fact, as we
show below, there are SSEs near the steady state with values for F”(z)(m; +
79y — 1) — 1 close to zero.” A refined analysis based on bifurcation theory
is therefore required to determine whether E-stable SSEs exist near a steady
state with F'(z) < —1.

3 Existence of E-stable SSEs

We now prove that for the case F'(z) < —1 E-stable Markov SSEs exist near
the steady state.

Theorem 2 Assume F'(z) < —1. For any neighborhood U of (z,z) there
exists an E-stable SSE (Z1,T2) € U .

The proof relies on a local bifurcation analysis of the differential equation
(3) using the linearization (5), see e.g. Chapters 2 and 3 of (Wiggins 1990).

"(Chiappori, Geoffard, and Guesnerie 1992) show that a continuum of Markov SSEs
exist near an indeterminate steady state using an argument based on limit transition
probabilities for which F'(%)(m11 + 7o — 1) — 1 is zero.



The bifurcation arises when the linear part of the system has a zero eigen-
value, i.e. T+ 7o —1 = (F’(i))*l. Treating w99 as a fixed number we vary
11 to achieve bifurcation. Letting

T = 1 + (F/(f))_l — 729 and v = T — 77?'117
the bifurcation occurs at v = 0. The system (3) is now written

W = (Fn+v)F@+w)+ (1 =711 —v)F(@ +w) —wy — 7,
Wy = (1 =m0)F (T4 w) + m20F (2 4+ wy) —wy — 2.
At wy = wy = v = 0, the coefficient matrix of the linear part is A = F'(z)I1—

I, which has roots 0 and F’—1, where F' = F'(%). The diagonalization of A is

givenbyA:Q(g F’O—l )QlwhereQ: ( L }),Witha:q%zz)f,’.

a
Writing
W =1 W
()= ()

Ui = Gi(y1, y2,v),

we obtain

for i = 1,2, where

Gi(ylvy%y) =
qﬂ[(ﬁll + V)F(fi' + 1+ y2) + (1 — T — V)F(i + ay; + yg) — Y1 — Y2 — i]
+q2[(1 — 72) (2 + 91 + 92) + T2 F(2 + ayy + y2) — ayr — yo — 7).

Augmenting this system with 7 = 0 leads to a three-dimensional system
for which the equations for 7; and  have zero linear parts and the equation
for 9, has the linear part (F'— 1)y, which is obviously stable. We now use the
center manifold theory, see e.g. pp. 194-203 of (Wiggins 1990). In particular,
the system has an invariant center manifold which can be represented by a
three times continuously differentiable function yo = h(y;,v) with h(0,0) =0
and Dh(0,0) = 0. Local stability of the system is governed by local stability
of the “projected system”

yl = Gl(yhh(ylvlj)vy)v
v = 0.



The second order expansions are

A~ . A !/ / 1 /!
F(e+yi+p) = F@)+Fy+Fp+sF (i + 93 + 2u192),

. . . 1
F@+ay +1) = F@)+ Fay,+ Flys + §F”(a2yf + Y5 + 2ay112)

hyi,v) = cyi +dyw + f* + O(||(y, v)])

where F” = F”(&) and = denotes equality up to O(||(y1, y2)||*). It follows
that on the center manifold the differential equation for y; can be written as

"

. , 1F
i1 = o+ 5 (1+ a)ad + Ol »)I) (6)

For the purposes of the theorem we are at liberty to choose w99 so that a # —1
which we now assume.?
From (6) it is evident that the system exhibits a transcritical bifurcation
at v = 0. The SSEs are defined by the equations
2(Fl)2
F'(1+ a) v
o = 0.

no=

In terms of the original variables we have
wy = g1 and wy = ay;.

It follows that E-stable SSEs exist for ¥ < 0 in this case. If v > 0 the SSEs
are not E-stable and learning instead converges to the steady state.
We conclude with two supplementary remarks:

(1) The bifurcation analysis shows that there also exist E-unstable Markov
SSEs near 7.

(2) A similar analysis can be conducted for K-state Markov SSEs, for K > 2.

For the K-state case the linearization at the steady state is a higher
dimensional analogue of (5) with the coefficient matrix F'(z)II — I, where
IT and I are K x K matrices. One of the roots of F'(Z)Il — I must be
F’(z) — 1 and the transition matrix IT can be chosen to yield one zero root
and remaining roots F'(Z)\; — 1 with negative real parts. Thus an analogous
result can be obtained for K-state SSEs.

8

a = —1 corresponds to the special case m1; = m99, and this could also be analysed by
looking at the third order terms. Since our object is to prove existence of E-stable SSEs
for some choice of m1; and 799, it is not necessary to address this special case.

8



4 An Example

We illustrate our result using a standard version of the Samuelson overlapping
generations model of money. There is a constant population, and agents live
for two periods. Each agent of generation ¢ supplies labor n; when young and
consumes c¢;1 when old. Labor is the only input to production and output
is perishable. There is a simple production function with one unit of labor
yielding one unit of output. Agents save all of their income in the form of
money, which they use to buy the consumption good when old. There is a
constant stock M = 1 of money.

The utility function of the representative agent of generation ¢ takes the
form

1—0o 1+€
W= S M
l1—-0c 1+¢’

where the parameters o, > 0. The budget constraints are

Pty = My, Pr41Ce41 = My,

where m; denotes the money balance carried forward. The first order condi-
tion for maximization of expected utility is

€ «r Pt Pt _&
ny; = B |—(——
! ! [pt+1 (pt+1)
or
o+e wr Pt \1—0o
ny = Ef(—)" 7.
Pe41
Here E; denotes the expectation held by agents at time . In a rational
expectations equilibrium this will be equal to the true mathematical condi-
tional expectation. We assume that current price is observable and hence
expectations are required for p;:ll.
The market clearing condition is m; = 1, so that n; = 1/p; and hence the

temporary equilibrium is given by
—(1+4e ®_g—
by ) = Etpt+11'
To put this in the form (1) we transform variables to z; = p; (%2) which
yields the reduced form
l—0o
l+e

Xy = E;‘fo, where ¢ =



x1land x2
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0.99}|
098}

Figure 1: Convergence of adaptive learning to an SSE

Under adaptive learning the agents have a perceived law of motion in which
the value of prices and hence of z; depend on the value of a two-state Markov
sunspot variable s;.

We are now in the standard setting with F(x) = 2?. The steady state is
given by £ = 1 and is indeterminate if ¢ < —11i.e. ¢ > 2+¢. From our results
we know that there then exist E-stable SSEs near the steady state. Note that
such SSEs must satisfy 7 € [0,1 4 ¢~']. E-stable SSEs occur for negative
values of v. We illustrate the cases of E-stable SSEs and an E-stable steady
state by simulating the differential equation (3). The parameter values are
¢ = —2, T = 0.1 and T2 — 0.4.

Figure 1 shows the case of convergence to an SSE when v < 0. (For this
simulation the value v = —0.01 was used.) In contrast, when v > 0 we get
convergence to the steady state. This is illustrated in Figure 2 for the choice
v = +0.01.

5 Conclusions

This paper has provided sharp results on the issue of existence of learnable
finite state Markov SSEs in a neighborhood of an indeterminate steady state
for the general univariate model x; = E; F(z441). If the derivative F'(Z) > 1
all such SSEs fail to be E-stable and hence are not learnable under adaptive
learning. However, if F'(Z) < —1, learnable SSEs always exist sufficiently

10
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Figure 2: Convergence of adaptive learning to steady state

near the steady state.

These theoretical results suggest that it is important for applied re-
searchers to determine the adaptive stability of sunspot equilibria near inde-
terminate steady states. Even though theoretical analysis may not be feasible
in more complex models, it is usually possible to determine E-stability nu-
merically using simulations. Both stable and unstable cases of Markov SSEs
have been found to arise in applied models as witnessed by current work, see
(Evans, Honkapohja, and Marimon 2001) and (Honkapohja and Mitra 2001).
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