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Abundance and activity of certain sulfur cycle microbes were

measured at two locations within Coos Bay, Oregon. One location was

a typical mudflat having no vascular plants, the other was an atypical

sheltered mudflat of higher organic content having vascular plants

during the summer. Both locations showed annual periodicity in sulfur

cycle activity. Sulfide production and consumption were slightly

higher during the warm months (July to December) than the cold months

(January to June), sulfur cycle bacteria were most active in late

autumn.

Measured rates of sulfide production by anaerobically resplrlng

bacteria (about 10-4 moles per ~quare meter per hour) would re~uire the

breakdown of as much carbon as that fixed by photosynthesis in situ,

suggesting that some organic matter is imported.
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The rate that volatile sulfur compounds are emitted to the

atmosphere from the sediment is as great as the estimated sediment

production of sulfide, indicating sources in addition to the sulfide

produced beneath the oxYgenated surface layer.

The rate of carbon fixation by non-illuminated surface sediment

under specified laboratory conditions increases during the months of

greatest sulfide flux, this estimate of non-photosynthetic fixation by

sulfide consumers is an order of magnitude less than photosynthetic

fixation.

Although species of the photosynthetic green and purple bacteria

could be isolated from intertidal mud at many Coos Bay locations, they

were abundant only at the few locations similar to the high organic

content sampling site. The only bacterioch10rophy11s measurable in

alcohol extracts of sediment were those of purple bacteria at such

sites. At the high organic content location bacterioch10rophy11s were

greatest at two horizons within the sediment. The first horizon, at

the sediment surface, contained bacteria growing photosynthetically.

The second horizon, at ten centimeters depth, contained bacteria that

seemed to be dependent on decomposition of wood fibers remaining from

logging operations a decade ago.

During autumn months the purple bacteria of the surface horizon

fixed as much carbon as did algae and vascular plants. If all the

electrons for photosynthesis in these bacteria came from sulfide, the

sulfide consumed would be one-third the amount emitted from the sedi­

ment.
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CHAPTER ONE

INTRODUCTION

Evolutionary Significance of the Sulfur Cycle

During the first billion years of life on earth, the atmos­

phere had little or no free oxygen. Bacteria evolved and thrived under

these conditions; the earliest species being fermenting bacteria and

sulfur cycling bacteria (Margulis, 1981). The fermenters derived

energy from the oxidation of organic matter. External electron

acceptors, if any, for this metabolism were other organic molecules.

The sulfur cycling bacteria, on the other hand, were probably the

first bacterial assemblage that cycled the electrons used in energy

metabolism (Peck, 1974; Dickerson. 1980). Some species oxidized

organized matter using sulfur compounds as electron acceptors, the

other species reclaimed those electrons in order to create organic

matter.

This cyclic, rather than dead-end, use of electrons is dia­

grammed in Figure 1.1. Photosynthetic bacteria reduce carbon atoms

using electrons from sulfur compounds such as sulfide (H2S). Sulfur

compounds of higher oxidation state, such as sulfate (H2S04), and

organic matter are formed. Nonphotosynthetic bacteria break down

this organic matter by means of respiration, using compounds such

as sulfate as electron acceptors.
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Figure 1.1 -- Cyclic flow of electrons in energy metabolism.

a. Sulfur photosynthesis and respiration.

b. Oxygen photosynthesis and respiration.
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This general scheme of electron transfer is elaborated in a

modern community of sulfur cycling bacteria. But few, if any, of

these bacteria are identical with their pre-Cambrian ancestors (Peck,

1974; Postgate, 1979). Some have specialized in various aspects of

the cycle, others have added accessory types of energy metabolism.

There are even sulfur cycle bacteria which derive energy from reacting

sulfide with molecular oxygen, a gas not present in the astmosphere

until late in the evolution of prokaryotes. Nevertheless, energy

metabolism in all these bacteria is based on pathways that evolved

during Earth's anaerobic past. The behavior of modern species often

reflect this ancestry. Two examples described in this work are:

1) the inability of oxygen-intolerant green sulfur bacteria (family

Chlorobiaceae) to thrive under otherwise favorable conditions at the

surface of intertidal sediment, and 2) chlorophyll synthesis in the

dark by purple bacteria (families Chromatiaceae and Rhodospirillaceae)

within intertidal sediment.

About two and one-half billion years ago, a new line of

photosynthesizers arose. These bacteria used a more abundant source

of electrons, water, in place of sulfide. Extracting electrons from

water requires additional light energy (whereas extracting electrons

from sulfide requires no input of energy), yet these bacteria became

dominant in most environments. Not only could they find electrons in

most environments, but also they liberated oxygen atoms from water in

the form of molecular oxygen which was toxic to their competitors the

sulfur cycle bacteria.
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A new cycle was formed by the oxygen-producing photosynthe­

sizers and some of the bacteria which consequently evolved the ability

to respire with oxygen. Electrons were cycled in oxygen-containing

compounds (Figure 1.1). This is identical in strategy to the sulfur

cycle: electrons for photosynthesis are supplied by water, the

resulting oxygen is used by respirers thus recreating water.

The abundance of molecular oxygen in the atmosphere forced

sulfur cycle bacteria to retreat to habitats that remained anoxic,

and to depend on oxygen cycle photosynthesizers which came to provide

the bulk of organic matter for heterotrophs on Earth. The descendants

of these sulfur cycle bacteria can be found in habitats of varying

degrees of anoxia: eutrophic and salt lakes, hot sulfur springs on

land and at mid-oceanic tectonic spreading centers, and marine sedi­

ments. Salt-water fishermen of South America even have a name for

the mats of sulfide-consuming bacteria which clog their nets as they

trawl the bottom: estopa, IIdirty wool II (Gallard, 1977).

The microfauna and non-sulfur cycle bacteria in these low­

oxygen, high-sulfide habitats have adapted in various ways to the

presence of toxic sulfide (Fenchel, 1969; Fenchel and Riedl, 1970).

The macrosc~pic community, whose ecological relationships have been

studied in greater detail, also has members who have adapted. Plants

(Howes, Howarth, Teal, and Valiela, 1981; Mendelssohn, McKee, and

Patrick, 1981) and animals (Boaden, 1975; Reise and Ax, 1979) have

been examined for evolutionary adaptation to sulfide environments.

Some of these larger organisms are dependent on sulfide in the sense
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that they have physiological defenses against sulfide that their

potential competitors don't (Felbeck, Childress, and Somero, 1981;

Powell, Crenshaw, and Rieger, 1979). Other organisms, such as the

vestimentiferan worm described by Cavanaugh and others (1981), are

indirectly dependent on sulfide for nutrition.

The Intertidal Sulfur Cycle

Intertidal mud is an ideal location to study the sulfur cycle

bacteria, for many types of sulfur metabolism are found here. Also

present are a variety of higher organisms which have adapted to

sulfide.

Sulfur cycle bacteria are particularly active in estuarine

sediment. Figure 1.2 shows why this is so. There is: 1) a high

input of organic matter from oxygen photosynthesizers, 2) a lack of

molecular oxygen which would permit oxygen respiration, 3) an abun­

dance of sulfate from seawater, where it is about 30 millimolar, which

does permit sulfur respiration, and 4) light which powers sulfur

photosynthesis. Not shown in Figure 1.2 is iron which is present

within the sediment and which acts reversibly to bind sulfide. In

doing so it keeps the concentration of free sulfide lower than it

would otherwise be, and it creates a sulfide reservoir when produc­

tion exceeds consumption.

Three broad categories of bacterial metabolism are represented

in Figure 1.2: sulfide production powered by the breakdown of organic
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Figure 1.2. -- Generalized diagram of the interaction of the
sulfur and oxygen cycles in intertidal sediment. Electrons flow from
the right-hand side towards the left-hand side. For each sulfur, car­
bon, and oxygen transformation the thermodynamically more energetic
form is shown on top.
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matter! nonphotosynthetic sulfide consumption using molecular oxygen!

and photosynthetic sulfide consumption using water.

Sulfide production is the key factor in a syntergistic system

of microbial transformation in the estuary. This kind of anaerobic

breakdown of organic matter prevents the accumulation of organics

characteristic of low sulfate environments such that in peat bogs.

The initiation of sulfide production is a self-enhancing cycle: when

oxygen is locally depleted! sulfate respiration commences and sulfide

accumulates. Sulfide can kill nearby organisms! thus introducing more

organic matter. This increases sulfide production, then sulfide

oxidation depletes oxygen in adjacent areas, and so on. In estuaries

like Coos Bay this general drift towards sulfide-rich sediment can be

limited by low organic input! but also it is periodically set back by

catastropic oxidation by winter storms or human dredging. It may

also be enhanced by diking or increased nutrient input by humans

(Bella! 1975). Superimposed on large-scale catastrophic set backs

and enhancement is the small-scale annual periodicity in sulfide

caused by changes in bacterial activity; this small scale periodicity

is what is measured in this work.

Sulfide can escape the sediment sulfur cycle by three non­

biological pathways. It can bind permanently to iron in the sediment

(Berner! 1970; Howarth! 1979)! it can leach from the sediment at low

tide as thiosulfate or other compounds (Howarth and Teal! 1980)! or

it can escape to the atmosphere (Adams et al.! 1981; Friend! 1973;

Hansen and van Gemerdan! 1972; Kellog! 1972). Atmospheric input from
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marine sources is a significant part of global sulfur transport.

The amount of reduced sulfur reaching the atmosphere each year from

biological marine sources, including mudflats, is about 108 metric

tons. This is as great as the physical input from oceans to the

atmosphere of sulfate in the form of spray, and as great as human

atmospheric input from coal-burning power plants and industrial

sources.

Whatever the fate of an individual reduced sulfur molecule,

it represents energy from biological sources stored as a compound

not accounted for in traditional ecological studies. In the

estuarine environment, this discrepancy is significant (Howarth and

Teal, 1980; Peterson, Howarth, Lipshulz, and Ashendorf, 1980).

Purpose of This Work

Sulfide producers have been studied in environments unlike

the muddy estuaries of the Oregon coast: Scandinavian fjords (Fenchel,

1969; Jorgensen, 1977a; Sorensen, 1979), the Black Sea (Deuser, 1970),

and salt marshes of eastern North America (Howarth and Teal, 1979 and

1980; Peterson Howarth, Lipshulz and Ashendorf, 1980). Photosynthetic

sulfide consumers (Fenchel and Straarup, 1971) and nonph~tosynthetic

sulfide consumers (Jorgensen, 1977b) have also been measured in

estuarine environments unlike ours. In these settings, activities

of sulfide oxidizers have never been measured directly.

The purpose of this work is to describe the natural history of

sulfur cycle bacteria in Coos Bay intertidal sediment. Qualitative
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and quantitative changes in activity of sulfur cycle bacteria across

the bay and over the year are discussed in terms of annual periodicity

in measured sulfur and carbon fluxes. Storage of biological energy

forfeited by certain anaerobic bacteria in reduced sulfur compounds

and the potential reclamation of that energy by other species are the

quantities of particular interest.

Measurements of reclamation of energy from sulfur compounds

are here limited to the upper few millimeters of sediment. This

energy returned in the form of organic matter is more likely to enter

food chains of higher organisms than that reclaimed deep in the sedi­

ment and includes some energy added by bacteria photosynthesis.

These are the rates that are measured: 1) photosynthetic

production of organic matter in intertidal areas, 2) sulfide produc­

tion by bacteria consuming organic matter in intertidal sediment,

3) carbon dioxide fixation at the sediment surface by sulfide-consuming

bacteria, and 4) loss of sulfide to the atmosphere.
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CHAPTER TWO

CHARACTERIZATION OF SULFUR CYCLE BACTERIA

Estaurine sulfur cycle bacteria include: 1) sulfur reducers

which power the cycle by creating reduced sulfur compounds using

energy released in the breakdown of organic matter, 2) nonphotosyn­

thetic sulfur oxidizers which used reduced sulfur compounds as a

source of energy, and 3) photosynthetic sulfur oxidizers which use

reduced sulfur as electron sources. Estuarine sulfur reducers

described by other workers include the genera Desulfovibrio (Postgate,

1979), Desulfuromonas (Phennig and Biebl, 1981), and Desulfotomaculum

Widdel and Pfennig, 1977). Nonphotosynthetic sulfur oxidizers include

Beggiatoa (Jorgensen, 1977b), and Thiobacillus (Adair and Gundersen,

1969; Matheron and Baulaigue, 1972). Photosynthetic sulfur oxidizers

belonging to the green and purple bacteria include Chlorobium (TrUper,

1970; Matheron and Baulaigue, 1972), Prostecochloris (TrUper, 1970;

Pfenning and Biebl, 1981), Chromatium (Trijper, 1970; Matheron and

Baulaigue, 1972), Thiocysitis (Truper, 1970), Thiocapsa (TrUper, 1970),

Ectothiorhodospira (TrUper, 1970; Matheron and Baulaigue, 1972) and

Rhodopseudomonas (Hansen and Veldkamp, 1973). Estuarine photosyn-

thetic sulfide consumers may also include cyanbacteria, which can often

perform sulfur photosynthesis in addition to oxygenic photosynthesis

(Castenholz, 1977; Cohen, Padan, and Shil0, 1975; Jorgensen, Kuenen,
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and Cohen, 1979). Oscillatoria, a cyanobacterium often found in high

sulfide environments, is found in estuaries (Van Baalen, 1961).

In Coos Bay, some of these bacteria form films that can be

seen in tidepools and tidal streams. On certain protected mudflats,

in spoil island ponds, and in some intertidal salt marshes, photo­

synthetic and nonphotosynthetic sulfur oxidizers can be seen where

the black sulfide layer approaches the sediment surface. Water seep­

ing from the sediment at such locations at low tide often supports

growth of Beggiatoa-like sulfur oxidizers, shown in Figures 2.1 and

2.2. In pools into which these streams flow, organic matter is

covered with sulfur oxidizers as well. Figure 2.3 shows films of

purple bacteria covering algae and twigs in such a pool. Figure 2.4

shows zonation of organisms at the edge of a tidepool. From right to

left, one sees: 1) a brown layer of diatoms and organic matter, 2)

a black band of sulfide producers with scattered blue patches of

photosynthetic purple bacteria, and 3) a white band of nonphotosyn­

thetic sulfide oxidizing bacteria.

On most Coos Bay mudflats, bacteria are not abundant enough

to form visible bands or films, but they can be detected by incubating

sediment in selective media. All muddy locations yielded the same

types of sulfur cycle bacteria, but it was always easier to grow

them from mud having higher organic content such as that at the pro­

tected Isthmus Slough location (sampling locations are shown in

Figure 3.1). The South Slough location is more typical of Coos Bay

intertidal sediment in that sulfur reducers were abundant but sulfur

oxidizers were not.
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Figure 2.1 -- Nonphotosynthetic sulfur oxidizing bacteria in a
tidal stream.

Figure 2.2. -- Microscopic view of nonphotosynthetic sulfur
oxidizing bacteria in a tidal stream.
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Figure 2.3. --Photosynthetic sulfur oxidizing bacteria in a
tidepool.

Figure 2.4. -- Zonation of sulfur cycle bacteria in a tidepool.
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Sulfate reducers and cyanobacteria were the bacteria easiest

to grow in selective media inoculated with sediment (using Medium e

of Postage, 1969 and Modified Chu-ll of Waterbury and Stanier, 1981

respectively). Cells resembling Rhodopseudomonas and Chromatium, and

and Thiobacillus could be grown (in Medium 2 of Pfenning and TrUper,

1981 and the medium described by Adair and Gundersen, 1969) but more

attempts were needed for success. Cells resembling Chlorobium were

the only green bacteria detected (using Medium 2 of Pfenning and

TrUper), and it took many samples of sediment to generate a single

growing culture.

Detection of green bacteria using the chromatography tech­

nique devised by Madigan and Brock (1976) for separating bacterio­

chlorophyll of green bacteria from chlorophyll of oxygen photosyn­

thesizers was attempted. Samples from all locations, including wave­

swept beaches where green bacteria cannot grow, showed a band on

the chromatograph in the location expected for bacteriochlorophyll

of green bacteria. However, the light absorbance in alcohol of

material in this band did not resemble that of bacteriochlorophyll

but resembled that reported for acid degraded carotenoid pigments

(Riemann, 1978). Amounts of green bacteriochlorophyll, if any, were

not great enough to be seen above the absorption of these unknown

substances.

It is not surprising that green bacteria are sparse in Coos

Bay sediment. They must have light to grow (Keister, 1978) and cannot

abide oxygen, but unlike the purple bacteria, have no mechanism for
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motility and cannot migrate to deeper oxygen-free layers when neces­

sary. Even in fjord sediment covered by a shallow layer of oxygen­

free water, green bacteria have not been proven active. A study by

Blackburn, Kleiber, and Fenchel (1975) indicates that sulfide concen­

trations in the water drops faster when the sediment is illuminated

with wavelengths needed by green bacteria than when illuminated by

those needed by purple bacteria. However, this sulfide loss could

instead be due to chemical oxidation by the oxygen produced by

diatoms and cyanobacteria using the same wavelengths.
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CHAPTER THREE

DISTRIBUTION OF PURPLE BACTERIA

All muddy sample locations ln this study of Coos Bay contained

bacterial sulfur reducers, nonphotosynthetic sulfur oxidizers, and

photosynthetic sulfur oxidizers that could be cultured in selective

media. The ability to estimate sulfur cycle activity by measuring

abundance of these bacteria would be a quick and simple method of

surveying the estuary, but in fact abundances of different sulfur

cycle bacteria show varying dependence on the rate of sulfur flux.

Limited sampling of sulfur reducers done for this study show

that they are most abundant several centimeters beneath the sediment

surface, a distribution described for other intertidal locations

(Abdollahi and Nedwell, 1970; Jorgensen, 1977a). Although in these

studies maximum numbers occurred at approximately the same depth in

the sediment as the maximum total sulfide production over the year,

these numbers do not vary predictably over time and hence are poor

indicators of activity change from month to month. The ability of

these bacterial populations to maintain viable cells in numbers

independent of measured sulfide production is in part due to the

ability of certain species to ferment as well as respire (Vosjan,

1975) and the ability of certain species to grow symbiotically with

methane-producing bacteria (Bryant, Campbell, Reddy, and Crabill,
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1977). In this symbiotic union, sulfur reducers shunt excess electrons

to methanogens via hydrogen gas rather than using the electrons to

reduce sulfur internally.

One filamentous nonphotosynthetic sulfide-consuming bacterium

often characteristic of intertidal mud rich in sulfide, Beggiatoa,

also does not vary predictably with sulfide production (Jorgensen,

1977b). Beggiatoa and other filamentous species were too sparse in

the upper layers of Coos Bay sediment to be estimated accurately under

a microscope. The single-celled sulfur oxidizers, known to exist from

enrichment cultures made from Coos Bay sediment, were too small and

nondescript to be counted directly.

I was unable to enumerate by incubation in selective media the

photosynthetic sulfide-consuming bacteria in Coos Bay sediment, but

the bacteriochlorophyll of purple bacteria in the sediment did seem

to vary in proportion to sulfide produced (described in Chapter Four

of this work). The abundance of bacteriochlorophyll was the criterion

for selecting the two locations studied intensively: South Slough

and Isthmus Slough. Abundance was measured at all ten locations

(Figure 3.1) during 1981 to detect any episodes of increased sulfur

cycle activity.

Determinations of bacteriochlorophyll of purple bacteria and

the chlorophyll of cyanobacteria, diatoms, and vascular plants (when

present) were made for the upper 1 mm and the upper 1.5 cm of sediment

each month at the ten locations. Determinations of bacteriochlorophyll
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Figure 3.1. -- Sampling locations in Coos Bay estuary. All
samples collected at a height of +1 meter relative to Mean Lower Low
Water.

a. Kuntz Ranch. Silty mud, north-east side of bridge where South
Slough Santuary access road crosses.

b. South Slough. Mud, 100 meters south of Ferrei Point.

c. Ferrei Point. Muddy sand, promentory east of the dike pro­
tecting the old Ferrei Ranch.

d. Bluff Beach. Sand, 50 meters west of Ferrei Point.

e. Loftus Beach. Sand, north end of sandy beach adjacent to
Fossil Point.

f. Airport Point. Sand, north side of public boat ramp.

g. Kentuck Inlet. Mud, one kilometer west of bridge across slough.

h. Isthmus Slough. Mud, 50 meters north of stream flowing under
road on east side of diked area.

i. Coos River. Mud, north side of river one kilometer east of
Allegany Bridge.

j. Myrtle Tree Park. Mud, riverbank upstream from public boat
launch.
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were made for the upper 10 cm of sediment, in 1 cm increments, each

month at the South Slough and Isthmus Slough locations.

South Slough (Figure 3.2) is a rather steep, muddy location

typical of Coos Bay. Its sediment organic content is about 10% by

weight. It has no measurable bacteriochlorophyll at any time of

year, and no plants other than diatoms, cyanobacteria, and an

occasional patch of Enteromorpha. The sediment is inhabited by

large crustaceans, clams, and worms.

Isthmus Slough (Figure 3.3) is a flat location with sediment

of 20% organic content by weight; it is representative of only limited

parts of Coos Bay. It has measurable amounts of bacteriochlorophyll

during most of the year. Uuring the summer there is a growth of

vascular plants normally found at very high intertidal locations.

Samples taken at Isthmus Slough were from an area far from shore,

where during the summer only sedge-family member Eleocharis parvula

was present. Only very small invertebrate animals were found to be

living underneath the mat of Eleocharis.

Methods

Chlorophyll of organisms mixed into sediment is more difficult

to quantify than that of planktonic organisms, which can be filtered

from the water in which they are suspecded. Very few techniques for

measurement of chlorophyll in sediment have been published. Diffi­

culties and methods developed in this stuQy for dealing with these

difficulties are described below.
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Figure 3.2. -- South Slough sampling location at low tide,
June 1981.

Figure 3.3. -- Isthmus Slough sampling location at low tide,
June 1981.

i

I

I
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Difficulties

Water

Drying of sediment alters chlorophyll to an unpredictable

degree, extraction must be performed with an organic solvent miscible

with water such as methanol. Extraction times are longer than for

dry sediment in nonmiscible solvents, but loss due to decomposition

during this longer extraction is negligible compared to experimental

variation.

Adsorption

Chlorophyll adsorbs onto sediment, to different degrees accord­

ing to the type of sediment. The problem is minimized by using a large

volume of methanol relative to the sample, and varying the volume of

methanol according to the amount of water in the sample so that the

concentration of water in all extracts is the same.

Degradation

Sulfide, organic acids, and other reactive compounds are present

in sediment and its pore water. Alteration of chlorophyll by such

compounds during extraction must be minimized by extracting at a low

temperature in the presence of a base.
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Filtration

Before measurement, chlorophyll in methanol solution must be

separated from sediment particles and from the salts which precipitate

when salt water is added to alcohol. These particles can be removed

by vacuum filtration through a membrane filter.

Analysis

In anaerobic mud, degradation of chlorophyll and its breakdown

products occurs very slowly. Phaeophytin is typically found in large

amounts, giving methanol extracts with a broad light absorption peak

rather than the narrow peak formed by intact chlorophyll alone. The

location of this peak varies slightly according to the pH and water

content of the extract, so peak height must be measured directly by

scanning a wide spectrum rather than measuring the absorbance at some

expected wavelength.

Standard Technique Used in This Study

Collection

Approximately the upper 1 mm of sediment was scraped away with

a scalpel; a sample of about 1 g was placed in a vial and immediately

cooled to the temperature of solidified carbon dioxide.

The upper 1.5 cm of sediment was sampled by placing a plastic

petri dish upside down into the mud, then sliding the other half (with

part of the lip removed) underneath. This intact disk was secured
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with a rubber band and cool ed immedi ately to the temperature of

solidified carbon dioxide.

The upper 10 cm of sediment was sampled as a core, using a long

10 cm diameter polyacrylate tube driven into the sediment with a

rubber mallet. In the laboratory, this core was removed and sliced

into 1 cm disks.

Storage

Samples were stored up to two weeks at -15°C, in plastic bags

to prevent desiccation.

Subsampling

The 1 cm thick disks from petri dish and core samples were

broken into small pieces using a screwdriver struck with a rubber

mallet. These pieces were variable in size, but each had fractures

perpendicular to the face thus giving equal proportions of horizontal

layers. Three pieces, of about 2 9 each, were selected. Each was

weighed, then placed into a screwcap vial. Pure methanol, with enough

NaOH solution added to make a final concentration of 10-4 molar, was

added to the vials. For each gram of sediment, 20 ml of methanol

was used for extraction.

Extraction

Samples were shaken as soon as the sediment had thawed, then
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placed in the dark at 4°C. After 24 hours they were shaken again,

then allowed to warm to room temperature before filtering.

Filtration

The supernatant methanol in each vial was poured into a membrane

filtering apparatus. A faucet aspirator was used to draw the extract

through a methanol-resistant membrane filter, thus removing any sedi­

ment or precipitated salt.

Absorbance Measurements

Light absorbance of each methanol extract was measured using a

cuvette of 10 cm path length in a Cary Model 14 recording scanning

spectrophotometer between 600 nm and 1000 nm wavelengths. Each

extract was measured, acidified with HCl to a final concentration of
-310 molar. and measured again. If too much acid is added. a broad

absorption peak between 600 nm and 800 nm wavelengths will appear due

to creation of carotenoid breakdown products (Riemann. 1978).

Chlorophyll Determination

Pigments were estimated using an algorithm ba~ed on the magnitude

of absorbance peak heights before and after acidification (Marker.

1972). The equations used were:

chlorophyll = 3.0 x (Cb Ca) x (V / L)

phaeophytin = (Cb 3.0 x (Cb Ca ») x 13.1 x 1.5 x (V / L)
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bacteriochlorophyll = 1.3 x (B b- Ba) x 21.6 x (V / L)

bacteriophaeophytin = (Bb-1.3x (Bb - Ba)x 21.6x 4.3x (VI L)

where Cb is absorption at the peak located near 665 nm wavelength

before acidification, Ca is absorption at that peak after acidification,

Bb is absorption at the peak located near 770 nm wavelenth before

acidification, and Ba is absorption at that peak after acidification.

The factors of 3.0 and 1.3 assume a ratio of before to after acid

peak heights of 1.5 and 4.3, respectively. The factor 13.1 is from

the extinction coefficient of 76.1 ml/mgxcm (Talling and Driver,

1961), the factor 21.6 from 46.2 ml/mgxcm (Smith and Benitez, 1955).

The volume of extract measured in ml is V, the cuvette path length in

cm is L.

Correction was made for absorption by water and carotenoid

breakdown product. Bacteriochlorophyll from green bacteria was assumed

to be absent.

Results

Extraction Techniques

Chlorophyll can be extracted from sediment using methanol and

acetone; the results of such extractions of homogenized mud are shown

in Figure 3.4. For large amounts of sediment, light absorption due

to chlorophyll is linearly proportional to sample weight when extrac­

tion is performed with a constant volume of acetone, but not when

performed with constant volumes of methanol. Normalization of water
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Figure 3.4. -- Light absorbance at 665 nm wavelength of acetone
(squares), methanol (circles), and proportional methanol (triangles)
extracts, as a function of sediment sample weight.

Figure 3.5. -- Light absorbance at 665 nm wavelength of methanol
extracts containing MgC03 (circles), NaOH (squares), or no additives
(triangles). as a function of sediment sample weight.
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content by adding a volume of methanol proportional to sample weight

results in a straight line. The difference in slope between the

proportional methanol volume method and the constant acetone volume

method is that expected due to the difference in extinction coeffi-

cients of chlorophyll in the two solvents. Methanol was chosen for

this study because it is less volatile than acetone, and because

acetone must be centrifuged to remove fine sediment and precipitated

salts since there is no acetone-resistant membrane filter.

Figure 3.6 shows that addition of MgC03, a traditional anti­

decomposition agent, to methanol has no effect on recovery. NaOH

in 10-4 molar concentration does, however. The recovery is about

10% greater than with no additive. A greater or smaller concentration

of NaOH gives less improvement, as shown in Figure 3.6. Estimated

chlorophyll and phaeophytin concentrations based on light absorption

of extracts before and after acid treatment are shown on Figure 3.7.

Estimated chlorophyll is maximum, and estimated phaeophytin minimum,

When NaOH is about 10-4 molar.

Homogenization of sediment before taking subsamples for extrac­

tion does reduce variability between subsamples, but it also reduces

recovery by about 10%, as shown in Figure 3.8. Hence, determining

the chlorophyll content of several replicate samples is a more accurate

way of estimating the mean.

Extraction of sediment samples of various weights into methanol

is shown in Figure 3.9. In this study, a standard extraction time of
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Figure 3.6. -- Light absorbance at 665 nm wayelength per gram of
sediment, extracted into methanol of varying NaOH concentrations.

Figure 3.7. -- Estimated amounts of chlorophyll (open) and
phaeophytin (filled) per gram of sediment, extracted into methanol of
varying NaOH concentrations.
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Figure 3.8. -- Light absorbance at 665 nm wavelength per gram of
sediment, for homogenized (circles) and unhomogenized (squares) samples.

Figure 3.9. -- Light absorbance at 665nmwavelength for samples
weighing 0.8 g (circles), 3.3 g (squares), and 9.7 g (triangles), as
a function of extraction time.
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24 hours was used since a typical sample (about 2 g) is expected to

give maximum recovery in about that length of time with only slow

loss thereafter.

Variation in Chlorophyll Over Small Distances

At anyone location, there is greater variability between mean

chlorophyll concentrations at various tidal elevations than between

single concentrations at a given tidal elevation. Figures 3.10,

3.11, and 3.12 show mean chlorophyll concentrations in the upper 1.5

cm of sediment within a sampling area oriented perpendicular to the

shoreline. Isopleths of chlorophyll concentration, as measured in

sediment from the locations indicated by dots, are shown. Variation

in concentration over different tidal elevations at South Slough, for

example, is shown in Figure 3.10. The concentration is greatest in

the middle of the figure. at about +1 m relative to Mean Lower Low

Water. and lower both shoreward and seaward where sediment is coarser

(an elevation change of about one-half meter in each direction).

Phaeophytin shows the same general distribution, it is present in

lower concentration. Elevation contours (not shown) roughly follow

chlorophyll and phaeophytin contours; there is a sand spit immed­

iately to the right side of each figure.

Chlorophyll concentration at Isthmus Slough has the same

general trend. but due to the more gradual slope there only sediment

above +1 mwas sampled (Figure 3.11). Phaeophytin, unlike chlorophyll,

is most concentrated near the shore and decreases seaward. High
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Figure 3010. -- Contours of chlorophyll and phaeophytin concen­
trations in upper 1.5 cm of sediment at South Slough in July 1981.
The 4 m-wide strip sampled is perpendicular to the shoreline, its
upper edge is aligned with the start of terrestrial plants (in these
diagrams, at the top of the page). A sand spit is located immedi­
ately outside of the sampling area, to the right-hand side of these
diagrams.

a. Chlorophyll, ~g per g sediment.

b. Phaeophytin, ~g per 9 sediment.



o. _____8- b. -2""'".~.~.. ...~.

~

.~.

"
I~

10­
~9-

.~.

~5
\

• • •• ••
ONE METER-

41



42

Figure 3.11. -- Contours of chlorophyll and phaeophytin concen­
trations in upper 1.5 cm of sediment at Isthmus Slough in January
1982. The 4 m-wide strip sampled is perpendicular to the shoreline.
its upper edge is aligned with the start of terrestrial plants (in
these diagrams. at the top of the page).

a. Chlorophyll. ~g per 9 sediment.

b. Phaeophytin. ~g per 9 sediment.



43

\
5

• •

b.· · • •

!ifO'5r· .~
4

60

· . I• •

~j

0.· • V/·
10

26
· . .J;.

o

• • • •
ONE METER-



44

Figure 3.12. -- Contours of bacteriochlorophyll and bacterio­
phaeophytin concentrations in upper 1.5 cm of sediment at Isthmus
Slough in January 1982. The 4 m-wide strip sampled is perpendicular
to the shoreline, its upper edge is aligned with the start of
terrestrial plants (in these diagrams, at the top of the page).

a. Bacteriochlorophyll, ~g per g sediment.

b. Bacteriophaeophytin, ~g per sediment.
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levels of phaeophytin near shore are probably due to the greater

accumulation of exogenous plant material there; this would also

account for the greater concentration of phaeophytin at the protected

Isthmus Slough location than the exposed South Slough location.

Bacteriochlorophyll at Isthmus Slough (Figure 3.12) also shows

greatest abundance away from the shore.

Variation in Chlorophyll Over Large Distances

Chlorophyll concentration varies with sediment type. Sandy,

low organic-content sediment shows less chlorophyll and phaeophytin

than fine, high organic-content sediment (Figures 3.13 and 3.14).

Furthermore, brackish water sediments such as that found at Coos River

and Myrtle Tree Park locations show less chlorophyll and phaeophytin

than similar sediments in salt water locations.

Of the ten sampling locations, only Isthmus Slough had

bacteriochlorophyll of purple bacteria in measurable amounts. Bacterio­

chlorophyll was, however, abundant in salt marsh and spoil island

sediments not included in this study.

Variation in Chlorophyll Over Time

Chlorophyll and phaeophytin concentrations showed no predictable

change over the year other than a slight rise in phaeophytin during

summer months at some locations (Figures 3.13 and 3.14).
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Figure 3.13 -- Concentration of chlorophyll (open circles) and
phaeophytin (closed circles) in upper 1 mm of sediment during 1981.

a. Kuntz Ranch.

b. South Slough.

c. Ferrei Point.

d. B1 uff Beach.
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Figure 3.13 -- Concentration of chlorophyll (open circles) and
phaeophytin (closed circles) in upper 1 mm of sediment during 1981.

e. Loftus Beach.

f. Airport Point.

g. Kentuck Inlet.

h. Isthmus Slough.
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Figure 3.13 -- Concentration of chlorophyll (open circles) and
phaeophytin (closed circles) in upper 1 mm of sediment during 1981.

i. Coos River.

j. Myrtl e Tree Park.
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Figure 3.14 -- Concentration of chlorophyll (open circles) and
phaeophytin (closed circles) in upper 1.5 cm of sediment during 1981.

a. Kuntz Ranch.

b. South Slough.

c. Ferrei Point.

d. Bluff Beach.
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Figure 3.14 -- Concentration of chlorophyll (open circles) and
phaeophytin (closed circles) in upper 1.5 cm of sediment during 1981.

e. Loftus Beach.

f. Airport Point.

g. Kentuck Inlet.

h. Isthmus Slough.
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Figure 3.14 -- Concentration of chlorophyll (open circles) and
phaeophytin (closed circles) in upper 1.5 cm of sediment during 1981.

i. Coos River.

j. Myrtle Tree Park.
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Figure 3.15 -- Concentration of bacteriochlorophyll (open circles)
and bacteriophaeophytin (closed circles) in upper 1 mm of Isthmus Slough
sediment during 1981.
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Figure 3.16 -- Concentration of bacteriochlorophyll (open circles)
and bacteriophaeophytin (closed circles) in upper 1.5 cm of Isthmus
Slough sediment during 1981.
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Variation in Chlorophyll Over Depth in Sediment

Comparison of Figure 3.13 with Figure 3.14 shows that the upper

1 mm of sediment contains more chlorophyll per gram sediment than the

upper 1.'5 cm.

Chlorophyll and phaeophytin are found far deeper in the sediment

than the 1.5 cm routinely sampled. Cores of mud collected monthly at

South Slough and Isthmus Slough (Figure 3.17) show this pigment at

depth. There is no predictable trend in concentration profiles over

the year, but in general there is more intact chlorophyll than

phaeophytin during the winter and the reverse during the summer.

Bactiochlorophyll and Bacteriophaeophytin at Isthmus Slough show

greatest concentrations at two horizons within the sediment. The

first horizon, at the sediment surface, is seldom as great as the

second horizon several centimeters deep. The depth of the second

horizon varied between monthly samples since precisely the same spot

cannot be sampled on consecutive months at the slowly healing Isthmus

Slough location, but the level varied according to the depth of a

wood fiber layer in the sample core. This layer, a couple of centi­

meters thick, lies under the sediment which has been deposited in

the decade since this area was used as a log storage location.

Bacteriochlorophyll concentrating at this location also differs

from chlorophyll concentration in that there is a predictable trend

over the year: it is high in winter, and low in summer.
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Figure 3.17. -- Concentration of chlorophylls and phaeophytins
as a function of depth in sediment.

a. January 1981. Shown are South Slough data for chlorophyll
(1.) and phaeophytin (2.), and Isthmus Slough data for chlorophyll
(3.), phaeophytin (4.), bacteriochlorophyll (5.), and bacterio­
phaeophytin (6.).
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Figure 3.17. -- Concentration of chlorophylls and phaeophytins
as a function of depth in sediment.

b. April 1981. Shown are South Slough data for chlorophyll (l.)
and phaeophytin (2.), and Isthmus Slough data for chlorophyll (3.),
phaeophytin (4.), bacteriochlorophyll (5.), and bacteriophaeophytin
(6. ) .
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Figure 3.17. -- Concentration of chlorophylls and phaeophytins
as a function of depth in sediment.

c. July 1981. Shown are South Slough data for chlorophyll (1.)
and phaeophytin (2.), and Isthmus Slough data for chlorophyll (3.),
phaeophytin (4.), bacteriochlorophyll (5.), and bacteriophaeophytin
(6.).
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Figure 3.17. -- Concentration of chlorophylls and phaeophytins
as a function of depth in sediment.

d. October 1981. Shown are South Slough data for chlorophyll
(1.) and phaeophytin (2.), and Isthmus Slough data for chlorophyll
(3.), phaeophytin (4.), bacteriochlorophyll (5.), and bacterio­
phaeophytin (6.).
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Discussion

The lack of bacteriochlorophyll at most locations suggests that

while exposed mudflats in Coos Bay support an active layer of sulfur

reduction, they do not have an active surface layer of sulfur oxida­

tion. The occurrence of an active surface layer of sulfur oxidizers

at the unusual location, Isthmus Slough, is due both to the greater

input of organic material and to the decreased oxygen penetration into

the sediment caused by this fine-grained material. The dike protecting

the seaward side of Isthmus Slough's communication with the bay creates

a zone of calm water in which organics can settle out, futhermore it

allows the annual growth of vascular plants which provides organic

matter when plants die in the fall. The vascular plants growing here

are typical of Coos Bay salt marshes located higher in relation to the

tides, with the exception of Eleocharis which I have only found at

Isthmus Slough.

Chlorophyll and phaeophtyin show a gradual decrease in concen­

tration with depth at both locations. This is the distribution one

expects from a mixing down from the photosynthetic layer of the surface,

followed by gradual decomposition of pigments. During most of the

year the major mechanism for mixing is burrowing by invertebrates.

Passage of sediment through the gut of these invertebrates would also

account for the generation of such large amounts of phaeophytin in

the sediment (Currie, 1962).
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Bacteriochlorophyll of the purple bacteria may be mixed down by

invertebrates, but at least part of the second horizon within Isthmus

Slouth sediment is due to growth of cells ~ situ. Pigments at both

horizons are greatest during months when sediment iron has been

charged and free sulfide is available, suggesting that growth is in

part powered by the oxidation of sulfide by means of molecular oxygen.

Oxygen in pore water can be detected within the upper layers of black

sediment such as where these cells are growing at Isthmus Slough, even

though on a gross scale the eH is negative tNovitsky, Scott, and Kepkay,

1981). It is also possible, however, that these cells are growing

anaerobically. Purple bacteria have been shown to grow anaerobically

in the dark using compounds common in intertidal mud; this growth being

sulfide-dependent in some species (Krasilnikova, Pedan, and Kondrateva,

1976) and not sulfide-dependent in others (Uffen and Wolfe, 1970).

Purple bacteria, like higher plants, make chlorophyll when

light intensity increases and stop making chlorophyll when placed in

the dark. But purple bacteria can do so only in the absence of

oxygen. If oxygen is present they do not make chlorophyll, even in

the light. Apparently, the purple bacteria regulate chlorophyll

synthesis according to the oxidation/reduction state of some electron

carrier associated with photosynthesis tCohen-Bazire, Sistrom, and

Stanier, 1957). When the system is reduced by a supply of light­

energized electrons the cell responds by making chlorophyll; when

darkness stops the flow of electrons the system drifts towards oxida­

tion and the cell responds by stopping chlorophyll synthesis. But
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in the presence of oxygen the system becomes oxidized regardless of

light conditions, and during growth in sulfide-rich mud the system

becomes reduced regardless of light conditions. Thus, in mud,

chlorophyll is produced that will never see the light of day.
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CHAPTER FOUR

SULFUR AND CARBON FLUX

South Slough, a typical Coos Bay mudflat, and Isthmus Slough,

a location of higher sediment organic content, were studied inten­

sively for one year. Between July 1981 and May 1982, monthly samples

were performed for these two locations. Sulfide emission from the

sediment to the atmosphere was measured in the field during low tide,

sulfide production and carbon dioxide uptake measurements were made

in the laboratory using intact sediment cores collected from these

two locations. From these measurements of linked sulfur and carbon

flow, estimates of energy flow were made.

Methods

Sulfide Production

The rate at which sulfate is respired to sulfide was measured

according to the technique of Jorgensen (1977a). Polybutyrate tubing

2.5 cm in diameter was pressed into sediment collected from the

sampling locations to a depth of about 4 cm. A rubber stopper was

put in the bottom of each tube, and the tubes were placed in a water

bath at the temperature of the sediment when it was collected. After

a few hours, sulfur-35 as Na 2S04 was injected at 2 cm beneath the

sediment surface in each of three tubes from each location. After 24
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hours, the reaction was stopped by cooling to the "temperature of

solidified carbon dioxide. The tubes and stoppers were removed from

the cores; each core was placed in a separate glass vessel containing

2 molar oxygen-free hydrochloric acid. Nitrogen gas was bubbled into

the solution in this vessel and was carried, along with sulfide

released from the sediment, through a glass tube into another vessel

containing a solution of basic 0.1 molar CdC1 2• After one hour of

bubbling, a fraction of this solution (containing precipitated sulfide)

and a fraction of the acid sulfate solution were removed for determina­

tion of radioactivity. Samples were placed in a glass vial containing

a toluene-based, water-accepting gelling scintillation cocktail.

Activity in each vial was determined using a Beckman Tri-carb Series

3000 Liquid Scintillation Counter. Actual activity was determined by

the channels ratio method according to standards prepared in the same

type of cocktail.

Sulfide Emission

Sulfide loss to the atmosphere was measured by a method similar

to that of Hansen (1978). A clear polyacrylate box, 5 cm tall, was

pressed halfway into the sediment. Nitrogen from a pressurized tank

flowed into an opening on one side of the box. This nitrogen, plus

all volatile compounds generated within the box such as sulfide, flowed

out an opening on the other side of the box. The gas was bubbled
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through a solution of basic 0.1 molar CdC1 2. The amount of sulfide

precipitated in one hour of gas flow was determined by iodine titra­

tion (Golterman, 1971).

Carbon Dioxide Uptake

Uptake of carbon dioxide by organisms at the sediment surface

was measured by a technique similar to that of Van Raalte et al.

(1974). Shallow cores of sediment were prepared by pressing 2.5 cm

diameter polybutyrate tubes into intact sediment, removing the tubes,

and then letting all but 1 cm of the core slide out. The sediment was

sliced at the base of the tube with a scalpel, then a rubber stopper

was put in to hold it. Filtered full-strength seawater with carbon-14

as NaC03 was poured onto the core (10 ml of water having activity 0.33

~Ci/ml) and a layer of petrolatum was poured onto the surface of the

water to prevent carbon dioxide in the air and water from mixing. All

tubes were placed in a water bath at the temperature of the mudflat

when samples were collected in the field. The water bath was situated

under a bank of fluorescent and incandescent bulbs giving a light

intensity of roughly one-tenth sunlight and a spectral distribution as

shown in Figure 4.1. After three hours of incubation, formaldehyde

solution was injected beneath the petrolatum layer in order to stop

the reaction. Each tube was immediately stripped of its petrolatum

layer, and the sediment washed into a glass centrifuge tube. The

contents were centrifuged and the supernatant discarded. To each

sample was added exactly 10 ml of concentrated nitric acid. Organic
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Figure 4.1. -- Light energy supplied by laboratory apparatus
compared to that supplied by sunlight, as a function of wavelength.
Power units are Watts per square meter illuminated per nm bandwidth;
supplied by ten-40 Watt "cool white" fluorescent bulbs and four-100
Watt incandescent bulbs.
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compounds, including carbon-14 labeled ones, were solubilized by the

acid. The slow bubbling action produced by the acid stripped the

CO2 that had not been consumed during the experiment, therefore

stirring during digestion was not necessary. After 12 hours the

contents of each tube was homogenized by stirring, then centrifuged,

and the supernatant was sampled. This aliquiot of supernatant was

added to a glass vial containing the scintillation cocktail described

for Sulfur-35 measurement and the activity measured with a liquid

scintillation counter. Corrected activity was determined using the

channels ratio method. Carbon fixation was estimated as described

by Strickland and Parsons (1972).

For each location, three treatments of three replicates each

were performed: incubation with Carbon-14 in the dark, incubation in

the light, and incubation in the light with dichlorophenyldimethyl

urea (DCMU) present. DCMU stops photosynthesis by algae and vascular

plants but allows bacterial photosynthesis to continue. The concen­

tration of DCMU used in this experiment was 10-4 molar. This high

concentration was used to insure penetration into blades of vascular

plants, when present (Forti and Parisi, 1962).

Results

Sulfide Production

Sulfide production at South Slough and Isthmus Slough are shown

on Figure 4.2. These data represent the production per square meter

of sediment horizon between 1 cm and 2 cm depth, a volume of 10 liters.
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Figure 4.2. -- Sulfide production within one-centimeter thick
horizon at 2 cm depth.

a. South Slough.
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Figure 4.2. -- Sulfide production within one-centimeter thick
horizon at 2 cm depth.

b. Isthmus Slough.
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During all times of the year at both locations, this horizon was

within the brown oxidized layer of sediment situated on the surface.

The mean and standard error determined from these replicates are

shown for each month.

Sulfide Emission

Sulfide emission to the atmosphere from sediment while exposed

at low tide is shown on Figure 4.3. The value of a single determina-

tion is shown for each month, precision of the measurements is about

2x 10-5 moles/m2/hour.

Carbon Dioxide Uptake

Carbon dioxide uptake at the sediment surface is shown on

Figure 4.4. Each months· data are summarized in three bars. Each

bar represents the mean and standard error of three replicates. The

left bar for each month is uptake in the dark; the middle bar is

uptake in the light with DCMU present; the right bar is uptake in the

1i ght.

A comparison of carbon dioxide uptake in the laboratory to

that in full sunlight is shown on Figure 4.5. Here, cores collected

at Isthmus Slough in February were exposed to the standard laboratory

lighting and to noon-time sunlight on a cloudless day. The values

for each treatment under the two conditions are shown in the same

form as the previous two Figures.
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Figure 4.3. -- Sulfide emission to the atmosphere.

a. South Slough.
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Figure 4.3. -- Sulfide emission to the atmosphere.

b. Isthmus Slough.



89



90

Figure 4.4. -- Carbon dioxide uptake by surface sediment.

a. South Slough.
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Figure 4.4. -- Carbon dioxide uptake by surface sediment.

b. Isthmus Slough.
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Figure 4.5. -- Carbon dioxide uptake by surface sediment in
laboratory light compared to uptake in sunlight. Sediment collected
at Isthmus Slough in February 1982.
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Hourly carbon dioxide uptake, corrected by these factors is

shown on Figure 4.6. Plotted are nonphotosynthetic uptake (dark

treatment), photosynthetic bacterial uptake (difference between dark

treatment and DCMU/light treatment), and photosynthetic plant uptake

(difference between DCMUjlight treatment and light treatment). No

statistically significant amount of photosynthesis by bacteria

occurred at South Slough.

Values of carbon dioxide uptake per year referred to in Chapter

Five are hourly values corrected by these factors and then multiplied

by the number of daylight hours sediment at this tidal height is

exposed during each day. The average number of hours of daylight

exposure in each of the months was computed by Marshall Pregnall

(personal communication) from published tide data for the Oregon coast.

Discussion

Sulfide Production

Studies by other workers show that sulfide production is

strongly temperature dependent. Production increases linearly as tem­

perature increases over the temperature range encountered in nature

(Abdollahi and Nedwell, 1979). In general, incubation temperatures

used in this study were higher from July to December than from January to

June, since the temperature measured during collection of samples at

low tide was higher in the last half of the year when low tide occurs
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Figure 4.6. -- Estimated carbon dioxide uptake by surface
sediment.

a. South Slough sampling location.
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Figure 4.6. -- Estimated carbon dioxide uptake by surface
sediment.

b. Isthmus Slough sampling location.
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usually during daylight hours than during the first half of the year

when low tides usually come at night.

In the field, annual variation in rate of organic matter input

is superimposed on variation in temperature. Thus sulfide production

is higher in autumn and lower in spring than would be predicted from

temperature alone (Howarth and Teal, 1979).

A graph of sulfide production at any time of the year as a

function of depth within intertidal sediment is a curve with maximum

rate at about a decimeter of depth. It approaches zero towards the

surface and has a more gradual drop-off downwards. A study by

Jorgensen (1977a) shows that the magnitude of the peak and gradients

in each direction are largest in late autumn and early winter. Deter­

mination of an accurate profile requires a tremendous number of sam­

.ples; such a profile was not done for this study. A rough lower

estimate of sulfide production in the upper 20 cm of sediment, which

accounts for nearly all production, is made by raising the value at

2 em by one order of magnitude.

At the 2 em horizon, production of sulfide for the year at

Isthmus Slough is lower than that at South Slough. This is because

of the depletion of sulfate during the winter when water overlying

the upstream Isthmus Slough location is made brackish by increased

rainfall.
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Sulfide Emission

Unexpectedly large amounts of sulfide were emitted by sediment.

The rates at Isthmus Slough were within published ranges for estuarine

mud of such high organic content (Adams et al., 1981; Hansen, 1978).

Rates at South Slough were lower than Isthmus Slough but higher than

those of similar exposed mud in Atlantic estuaries. Yet, seldom can

one smell sulfide at South Slough and purple bacteria indicative of

sulfide are never found in large numbers. It is possible that forms

of reduced sulfur other than sulfide are being measured by this tech­

nique. These would include compounds known to be emitted from mud­

flats: carbonyl sulfide and methyl mercaptan (Adams et al., 1981),

dimethyl sulfoxide (Andreae, 1930), carbon disulfide (Lovelock, 1974),

and dimethyl sulfide (Lovelock, Maggs, and Rasmussen, 1972). Such

compounds may be retained by the cadmium in the measurement apparatus

but not by iron in the sediment, thus explaining the absence of the

characteristic black color of reduced sediment. It is also possible

that sulfide reaching the atmosphere is not passing through the

oxidized layer but is produced within a microlayer at the sediment

surface.

Carbon Fixation

These data represent potential photosynthesis under special

laboratory conditions and thus data from different months are directly

comparable. The decrease in specific activity of C-14 in water
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immediately over the sediment, which is due to uptake and to addition

of nonradioactive carbon by respiration, is not taken into account.

Thus, values are lower estimates (Revsbech, Jorgensen, and Brix, 1981).

Approximate conversion to daylight values can be made using

the data on Figure 4.5. In these experiments, photosynthesizers seem

to approach saturation at far less than daylight intensities. Both

bacterial and algal photosynthesis increase only by about a factor of

two. A1though one might expect higher intensities outdoors to inhibit

bacterial photosynthesis via increased oxygen production by algae,

the factor of increase is higher for bacteria than for algae plus

vascular plants. A reasonable interpretation is that bacteria, which

because of their use of sulfide are found underneath the diatoms

(Parkin and Brock, 1980) benefit from increased light penetration.
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CHAPTER FIVE

SU~1MARY

The seasonality in physical sediment characteristics, such as

oxygen uptake, sulfate and sulfide concentrations in pore water, and

the fraction of iron which is bound to sulfur, described for north­

east Pacific estuaries by other workers (Bella, 1975; Crook, 1970;

Pamatmat, 1968) is reflected here in direct measurements of sulfur

cycle bacteria and their activity in the sediment. Sulfide from

anaerobic respiration is produced in greatest quantities during the

fall and winter; sulfide emission to the atmosphere and sulfide

uptake by photosynthetic bacteria peak in the late fall. Spring and

summer are times of diminished sulfide production and consumption.

The annual cycle in sedimentary sulfide content is buffered

by iron, which can reversibly bind sulfide. Iron dissolved in river

water precipitates in the salt water of the estuary and is buried,

hence, iron is abundant in the sediment. During winter months iron

discharges its sulfide as that in pore water is oxidized; during

summer months it is recharged and by late fall sulfide production

in the sediment is nearly all available for use by bacteria. This

annual charging and discharging is visible to the casual observer as

a yearly rise and fall in the depth within the sediment of the black

reduced iron layer which is characteristic of sulfide-producing mud.
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In early spring the brown layer, which contains oxidized iron, over-

lying the black layer is a decimeter thick. By fall it shrinks to

little more than a centimeter.

An Energy Budget of Intertidal Sediment

From measured rates of sulfur and carbon flux, estimates of

energy flow can be-made. The appropriate unit for energy flow is

the Watt (W), which is equal to one joule per second. Data from this

study, in units of moles/m2/h, were transformed using the actual free

energy change values calculated by Howarth and Teal (1980) to give

Watts per square meter.

South Slough

Taking into account the change in daylight hours and time of

low tides during the year, one square meter of Coos Bay mud at +1

meter elevation is receiving sunlight at an annual average rate of

about 100 W/m2. This value assumes clouds to be absent and thus it

is an underestimate.

Only a fraction of this energy is used in photosynthetic

carbon fixation. The 0.94 moles/m2/year carbon fixed at South Slough

represents an annual average energy flow of 0.015 W/m2.

If all of this carbon created in situ were respired by sulfide­

producing bacteria, it would account for 0.47 moles/m2/year. The

actual rate is 1.67 moles/m2/year, which is four times greater. This
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sulfide, if moved to oxygenated layers and oxidized completely using

molecular oxygen, would correspond to a free energy flow of 0.039

W/m2.

The loss of sulfide to the atmosphere at low tide, 0.19 moles/

m2/year, represents an average energy flow of 0.004 W/m2. If diffusion

of sulfide is the rate limiting step, then an equal amount is lost to

the water at high tide. This amounts to one-fifth of that estimated

to be produced deep within the sediment.

Reduced sulfur compounds may be incorporated permanently into

sediment minerals, or they may leach from the sediment at low tide.

Neither of these rates was measured in this study.

Isthmus Slough

At Isthmus Slough, carbon dioxide uptake was measured to be

1.34 moles/m2/year. Averaged over the year, this represents 0.021

2W/m .

If all of this carbon were consumed by sulfide-producing

bacteria, 0.74 moles/m2/year would be created. The actual sulfide

production is 1.57 moles/m2/year, which corresponds to 0.037 W/m2.

Emitted to the atmosphere was 0.34 moles/m2/year of sulfide.

This, plus an equal loss to water at high tide, corresponds to 0.016

W/m2. It is half the estimated production within the sediment.

Some sulfide was also consumed by photosynthetic bacteria.

If all electrons for photosynthesis in these bacteria were supplied

by sulfide and none were supplied by organic compounds, the sulfide
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2consumed would represent 0.006 W/m. This is one-third of that

leaving the sediment.

Conclusions

Sulfide Production

The amount of sulfide produced at South Slough and Isthmus

Slough is similar to that reported in other studies of intertidal

mud (Abdollahi and Nedwell, 1979) but lower than that of salt marshes

(Howarth and Teal, 1979) and Scandinavian fjords (Jorgensen, 1977a).

Assuming that the photosynthetic productivity of water over­

lying intertidal sediment is as great as that of the sediment (Joint,

1978), then nearly enough reduced carbon would be produced at both

Isthmus Slough and South Slough to support this sulfide production.

The studies by Howarth and Teal (1980) and Jorgensen (1977a) indicate,

however, that half the sedimentary breakdown of organic matter is by

oxygen respiration. This suggests an input of organic matter to the

sediment as great as the amount produced in situ. This additional

organic input could be from the settling of detritus out of the water

column, or from the accumulation by invertebrates actively filtering

the water column.

For each square meter of sediment surface at South Slough and

Isthmus Slough, the flow of energy into reduced sulfur is twice that

flowing into reduced carbon. However, sulfide is unlike organic matter
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in the sense that it is quite unstable outside of the anoxic mud and

will spontaneously oxidize if it is not first used biologically. In

this study the rate of sulfide oxidation deep within the sediment is

not measured; hence the amounts of energy stored in sulfur and carbon

compounds cannot be compared.

Sulfide Leaving the Sediment Surface

The amount of sulfide reaching the atmosphere from South

Slough, a location typical of Coos Bay, is similar to that measured

for high-organic content Atlantic intertidal sediment (Adams et al.,

1981) and fjord sediment covered by a few centimeters of water (Han­

sen, 1978). Yet this amount, plus an estimated equal amount lost to

the water during high tide, is more than one-fifth the total estimated

production within the sediment. At Isthmus Slough, the comparable

fraction is one-half. It is unlikely that such a large fraction would

escape incorporation into iron minerals and loss to chemical and

biological oxidation. Furthermore, the measured sulfide concentration

in the brown surface layer of mud is zero. A reasonable explanation

for this high emission is that in addition to the production of

sulfide in the anaerobic layer of sediment, there is significant

production in a thin surface layer. The surface is rich in plants

and animals which excrete large amounts of reduced carbon which could

power sulfate reduction.

Sulfate respiration in the well-oxygenated upper few centi­

meters has been demonstrated (Goldhaber et a1., 1977; Jorgensen,
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1977b), but a thin layer with very high production has not been

described in the literature. This layer might consist of scattered

fecal pellets and other particles rich in organic matter. Jorgensen

demonstrated that sulfide could be generated in particles less than

1 mm in diameter and that the time required for a sulfide molecule

to reach the outside of the particle would be less than one second.

For this present study, several measurements were made of the trans­

fer of sulfur-35 as sulfate into sulfide in water overlying sediment

cores, but only trace amounts were found. Assuming that the technique

used (Fenchel and Jorgensen, 1977) is accurate under these conditions,

then in submerged sediment there must be a very high turnover of

sulfate to sulfide, and then finally, to some sulfur compound not

measured using this experimental technique. The instantaneous concen­

tration of sulfide would be very low. Considering that oxidation of

sulfide in oxygenated seawater takes minutes or hours (Chen and

Morris, 1972; Cline and Richards, 1969), some special biological or

chemical property of the sediment/water interface would have to be

invoked. Such sulfide production would be measurable only when

stripped and trapped continuously as it was emitted from sediment

not covered by water. The existence of some kind of surface layer

is supported by the observation that at Isthmus Slough bacterial

photosynthesis varies roughly with measured sulfide emission to the

atmosphere, but not with measured sulfide production.

Whatever the source, large amounts of sulfide enter the atmos­

phere from Coos Bay intertidal sediment. Using South Slough data as
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average values. an estimate of Coos Bay sulfide emission would vary

over the year between one-fourth metric ton per day and two metric

tons per day.

Bacterial Sulfide Consumption

Carbon dioxide uptake by unilluminated surface sediment. of

which some unknown fraction is due to nonphotosynthetic sulfide­

consuming bacteria. is much less than uptake by illuminated sediment.

The highest value is in October. and may correspond to a peak in

nonphotosynthetic sulfide consumption. But in general. the magnitude

of uptake in the dark roughly varies with that by algae in the light.

This suggests that most measured uptake in the dark is residual carbon

dioxide uptake by previously illuminated photosynthesizers.

Total nonphotosynthetic carbon dioxide fixation due to sulfide

consumption in the sediment column cannot be estimated since the

depth of penetration of the carbon-14 label into the sediment is

unknown. The maximum uptake is known to occur at the boundary between

the upper oxygen-rich layer and the lower sulfide-rich layer (Kepkay.

Cooke. and Novitsky. 1979; Kepkay and Novitsky. 1980) which occurs

at several centimeters depth in Coos Bay sediment.

At South Slough. there is no statistically significant differ­

ence between carbon dioxide uptake in the dark and that in the light

in the presence of DCMU except during the months of September and May.

Since no bacteriochlorophyll was detected in South Slough sediment
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collected in these months, it is likely that this difference reflects

experimental variation rather than bacterial photosynthesis.

Photosynthetic carbon dioxide fixation by bacteria at Isthmus

Slough is significant. One-third of the annual fixation is due to

bacteria. From month to month this fixation varied roughly with

measured sulfide emission rates, suggested that this metabolism is

largely sulfide-dependent. However, uptake powered by heterotrophic

carbon metabolism in these bacteria is not stopped by the DCMU added

in the one treatment. If all measured bacterial photosynthesis is

assumed to be sulfide-dependent, the amount of sulfide consumed during

the year is only one-third of that leaving the sediment.

Unmeasured Rates

Three mechanisms of sulfide loss have not been accounted for

in this study. In increasing probable magnitude, they are: 1) loss

by leaching at low tide, 2) incorporation into minerals, and 3)

chemical and biological oxidation deep within the sediment.

Much of the sulfide may be partially oxidized, for example to

thiosulfate (Howarth and Teal, 1980), and leach into water channels

at low tide. At least some estuarine locations have measurable

amounts of reduced sulfur in the water and contain bacteria capable

of using this reduced sulfur (Howarth and Teal, 1980; Tuttle and

Jannasch, 1973).

A very large fraction of sulfide produced within intertidal

sediment is, for a time, recoverable as pyrite (FeS2). Most of this
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pyrite is re-oxidized, but the amount remaining may represent 10% of

the sulfide produced (Jorgensen, 1977a; Howarth and Teal, 1979).

Sulfide oxidized deep within the sediment is undoubtedly the

largest unmeasured rate in this study. Chemical oxidation, and most

biological oxidation, occurs by reaction of reduced sulfur compounds

with molecular oxygen. Oxygen is known to be present in pore water

deep within the sediment. Direct measurement in intact sediment of

sulfide oxidation and the carbon fixation which may accompany it is

difficult, but it is the one aspect of intertidal sulfur cycling that

is currently estimated only by deduction.



113

BIBLIOGRAPHY

Abdollahi, H., and D. B. Nedwell. 1979. Seasonal temperature as a
factor influencing bacterial sulfate reduction in a salt
marsh sediment. Microb. Ecol. 5: 73-79.

Adair, F. W., and K. Gundersen. 1969. Chemoautotrophic sulfur
bacteria in the marine environment. I. Isolation, cultiva­
tion, and distribution. Can. J. Microbial. 15: 345-353.

Adams, D., et al. 1981. Biogenic sulfur strengths. Environ. Sci.
Tech. 15: 1493-1496.

Andreae, M. O. 1980. Dimethylsulfoxide in marine and freshwaters.
Limnol. Oceanogr. 25: 1054-1063.

Ansbaek, J., and T. H. Blackburn. 1980. A method for the analysis
of acetate turnover in a coastal marine sediment. Microb.
Ecol. 5: 253-264.

Bella, D. 1975. Tidal flats in estuarine water quality analysis.
E. P. A. Ecological Research Series, Number EPA-660/3-75-025.

Berner, R. A. 1970. Sedimentary pyrite formation. Am. J. Sci.
268: 1-23.

Blackburn, T. H., P. Kleiber, and T. Fenchel. 1975. Photosynthetic
sulfide oxidation in marine sediments. Oikos 26: 103-108.

Boaden, P. J. S. 1975. Anaerobiosis, meiofauna and early metazoan
evolution. Zool. Scripta 4: 21-24.

Bryant, M. P., L. L. Campbell, C. A. Reddy, and M. R. Crabill. 1977.
Growth of Desulfovibrio in lactate or ethanol media low in
sulfate in association with H2-utilizing methanogenic bacteria.
Appl. Environ. Microbial. 33: 1162-1169.

Cammen, L. M. 1980. The significance of microbial carbon in the
nutrition of the deposit feeding polychaete Nereis succinea.
Mar. Biol. 61: 9-20.

Castenholz, R. 1977. The effect of sulfide on the blue-green algae
of hot springs. II. Yellowstone National Park. Microb.
Ecol. 3: 79-105.



114

Cavanaugh, C. M. et ala 1981. Prokaryotic cells in the hydrothermal
vent tube worm Riftia pachyptila Jones: possible chemoauto­
trophic symbionts. Science 213: 340-341.

Chen, K. Y., and J. C. Morris. 1972. Kinetics of oxidation of
aqueous sulfide by 02. Environ. Sci. Tech. 6: 529-537.

Cline, J. D., and F. A. Richards. 1969. Oxygenation of hydrogen
sulfide in seawater at constant salinity, temperature, and
pH. Environ. Sci. Tech. 3: 838-843.

Cohen, Y., E. Padan, and M. Shilo. 1975. Facultative anoxygenic
photosynthetis in the cyanobacterium Oscillatoria limnetica.
J. Bact. 123: 855-861.

Cohen-Bazire, W. R. Sistrom, and R. Y. Stanier. 1957. Kinetic studies
of pigment synthesis by non-sulfur purple bacteria. J. Cell.
Compo Phys. 49: 25-51, 56-68.

Crook, G. R. 1970. ~ situ measurement of the benthal oxygen
requirements of tidal flat deposits. Thesis, Oregon State
University.

Currie, R. I. 1962. Pigments in zooplankton faeces. Nature 193:
956-957.

Dickerson, R. 1980. Cytochrome c and the evolution of energy
metabolism. Sci. Amer. 242(2): 136-153.

Felbeck, H., J. J. Childress, and G. N. Somero. 1981. Calvin-Benson
cycle and sulfide oxidation enzymes in animals from sulfide­
rich habitats. Nature 293: 291-293.

Fenchel, T. 1969. The ecology of marine microbenthos IV. Structure
and function of the benthic ecosystem, its chemical and
physical factors and the microfauna communities with special
reference to the ciliated protozoa. Ophelia 6: 1-182.

Fenche1, T., and R. J. Riedl. 1970. The sulfide system: a new
biotic community underneath the oxidized layer of marine
sand bottoms. Mar. Biol. 7: 255-268.

Fenchel, T., and B. J. Straarup. 1971. Vertical distribution of
photosynthetic pigments and penetration of light in marine
sediments. Oikos 22: 172-182.

Forti, G., and B. Parisi. 1962. Evidence for the occurrance of
cyclic phosphorylation in vivo. Biochem. Biophys. Acta 71:
1-6.



115

Friend, J. P. 1973. The global sulfur cycle, pp. 177-201 in S. I.
Rasool (ed.) Chemistry of the lower atmosphere. Plenum Press.

Fuller, R. C. 1978. Photosynthetic carbon metabolism in the green
and purple bacteria, pp. 691-705 in R. C. Clayton and W. R.
Sistrom (eds.) The PhotosyntheticlBacteria. Plenum Press.

Gallardo, V. 1977. Large benthic microbial communities in sulfide
biota under Peru-Chile subsurface countercurrent. Nature
268: 331-332.

Gargas, E. 1970. Measurements of primary production, dark fixation
and vertical distribution of the microbenthic algae in the
Oresund. Ophelia 8: 231-233.

Goldhaber, M. B., et al. 1977. Sulfate reduction, diffusion, and
bioturbation in Long Island Sound sediments: report of the
FOAM group. Am. J. Sci. 277: 193-237.

Golterman, H. (ed.) 1971. Methods for Chemical Analysis of Fresh­
waters. I. B. P. Handbook Number 8. Blackwell.

Hansen, M. H., K. Ingvorsen, and B. B. Jorgensen. 1978. Mechanisms
of hydrogen sulfide release from coastal marine sediments to
the atmosphere. Limnol. Oceanogr. 23: 68-76.

Hansen, T. H., and H. van Gemerdan. 1972. Sulfide utilization by
purple nonsulfur bacteria. Archiv. Mikrobiol. 86: 49-56.

Hargrave, B. T., and G. A. Phillips. 1981. Annual in situ carbon
dioxide and oxygen flux across a subtidal marine sediment.
Estuar. Coast. Shelf Sci. 12: 725-737.

Howarth, R. W. 1979. Pyrite: its rapid formation in a salt marsh
and its importance in ecosystem metabolism. Science 203: 49­
51.

Howarth, R. W., and J. M. Teal. 1979. Sulfate reduction in a New
England salt marsh. Limnol. Oceanogr. 24: 999-1013.

Howarth, R. W., and J. M. Teal. 1980. Energy flow in a salt marsh
ecosystem: the role of reduced inorganic sulfur compounds.
Amer. Nat. 116: 862-872.

Howes, B., R. Howarth, J. Teal, and I. Valiela. 1981.
reduction potentials in a salt marsh: spatial
interactions with primary production. Limnol.
350-360.

Oxidation­
patterns and
Oceanogr. 26:



116

Joint, I. R. 1978. Microbial production of an estuarine mudflat.
Est. and Coastal Mar. Sci. 7: 185-195.

Jorgensen, B. B. 1977a. The sulfur cycle of a coastal marine sedi­
ment (Limfjorden, Denmark). Limnol. Oceanogr. 22: 814-832.

Jorgensen, B. B. 1977b. Distribution of colorless sulfur bacteria
(Beggiatoa spp.) in a coastal marine sediment. Mar. Biol.
41: 19-28.

Jorgensen, B. B. 1977c. Bacterial sulfate reduction within reduced
microniches of oxidized marine sediments. Mar. Biol. 41: 7-17.

Jorgensen, B. B., T. Fenchel. 1974. The sulfur cycle of a marine
sediment model system. Mar. Biol. 24: 189-201.

Jorgensen, B. B., J. G. Kuenen, and Y. Cohen. 1979. Microbial
transformations of sulfur compounds in a stratified lake
(Solar Lake, Sinai). Limnol. Oceanogr. 24: 799-822.

Keister, D. L. 1978. Respiration vs. photosynthesis, pp. 849-856
in R. C. Clayton and W. R. Sistrom (eds.) The Photosynthetic
Bacteria. Plenum Press.

Kellog, W. W., et al. 1972. The sulfur cycle. Science 175: 587-596.

Kepkay, P. E., R. C. Cooke, and J. A. Novitsky. 1979. Microbial
autotrophy: a primary source of organic carbon in marine
sediments. Science 204: 68-69.

Kepkay, P. E., and J. A. Novitsky. 1980. Microbial control of
organic carbon in marine sediments: coupled chemoautotrophy
and heterotrophy. Mar. Biol. 55: 261-266.

Kleiber, P., and T. H. Blackburn. 1978. Model of biological and
diffusional processes involving hydrogen sulfide in a marine
microcosm. Oikos 31: 280-283.

Krasilnikova, E. N., Z. V. Pedan, and E. N. Kondrateva. 1976.
Growth of purple sulfur bacteria in dark under anaerobic
conditions. Microbiology 46: 503-507.

Lovelock, J. E., R. J. Maggs, and R. A. Rassmussen. 1972. Atmospheric
dimethyl sulfide and the natural sulfur cycle. Nature 237:
452-453.

Lovelock, J. E. 1974. CS2 and the natural sulfur cycle. Nature
248: 625-626.



117

Madigan, M. T., and T. D. Brock. 1976. Quantitative estimation of
bacteriochlorophyll c in the presence of chlorophyll a in
aquatic environments. Limnol. Oceanogr. 21: 462-467.

Marker, A. F. H. 1972. The use of acetone and methanol in the
estimation of chlorophyll in the presence of phaeophytin.
Freshwater Biol. 2: 261-385.

Martens, C. 5., and R. A. Berner. 1972. Interstitial water chemistry
of anoxic Long Island Sound and sediments. I. Dissolved
gasses. Limnol. Oceanogr. 22: 10-25.

Matheron, R., and R. Baulaigue. 1972. Bacteries photosynthetiques
sulfur.euses marines. Archiv.Mikrobiol. 86: 291-304.

Mendelssohn, I. A., K. L. McKee, and W. H. Patrick.
deficiency in Spartina alterniflora roots:
tion to anoxia. Science 214: 439-441.

1981. Oxygen
metabolic adapta-

Novitsky, J. A., I. R. Scott, and P. E. Kepkay. 1981.
iron, sulfur, and microbial activity on aerobic
transitions in marine sediments. Geomicrobiol.
223.

Effects of
to anaerobic
J. 2: 211-

Oviatt, C., B. Buckley, and S. Nixon. 1981. Annual phytoplankton
metabolism in Narragansett Bay calculated from survey field
measurements and microcosm observations. Estuaries 4: 167­
175.

Pamatmat, M. M. 1968. Ecology and metabolism of a benthic community
on an intertidal sandflat. Int. Revue Ges. Hydrobiol. 53:
211-298.

Parkin, T. B., and T. D. Brock. 1980. Photosynthetic bacterial
production in lakes: the effect of light intensity. Limnol.
Oceanogr. 25: 711-718.

Peck Jr., H. D. 1974. The evolutionary significance of inorganic
sulfur metabolism. Soc. Gen. Microbiol. Symp. 24: 241-262.

Peterson, B. J., R. W. Howarth, F. Lipschulz, and D. Ashendorf.
1980. Salt marsh detritus: an alternative interpretation of
stable carbon isotope ratios and the fate of Spartina alterni­
flora. Oikos 34: 173-177.

Pfennig, N. 1978. General physiology and ecology of photosynthetic
bacteria, pp. 3-18 in R. C. Clayton and W. R. Sistrom (eds.)
The Photosynthetic Bacteria. Plenum Press.



118

Pfennig, N. 1978. General physiology and ecology of photosynthetic
bacteria, pp. 3-18 in R. C. Clayton and W. R. Sistrom (eds.)
The Photosynthetic Bacteria. Plenum Press.

Pfennig, N., and H. Biebl. 1976. Desulfuromonas acetoxidans gen.
nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate­
oxidizing bacterium. Arch. Mikrobiol. 110: 3-12.

Pfennig, N., and H. G. TrUper. 1981. Isolation of members of the
families Chromatiaceae and Chlorobiaceae, pp. 279-289 in
M. P. Starr (ed.) The Prokaryotes. Springer-Verlag. --

Postgate, J. R. 1969. Sulfate reducing bacteria, pp. 611-628 in
J. R.,Norris and O. W. Ribbons (eds.) Methods in Microbiology
Vol. 1. Academic Press.

Postgate. J. R. 1979. The Sulfate Reducing Bacteria. Cambridge
University Press.

Powell, E., M. Crenshaw, and R. M. Rieger. 1979. Adaptations to
sulfide in the meiofauna of the sulfide system. I. S-35
accumulation and the presence of a sulfide detoxification
system. J. Exp. Mar. Biol. Ecol. 37: 57-76.

Ramm, A. E. 1972. Some aspects of the sulfur cycle in tidal flat
areas, and their impact of estuarine water quality. Thesis,
Oregon State University.

Ramm, A. E., and D. A. Bella. 1974. Sulfide production in anaerobic
microcosms. Limnol. Oceanogr. 19: 110-118.

Reise, K., and P. Ax. 1979. A meiofaunal 'Thiobios' limited to the
anaerobic sulfide system of marine sand does not exist.
Mar. Biol. 54: 225-237.

Revsbech, N. P., B. B. Jorgensen, and O. Brix. 1981. Primary pro­
duction of microalgae in sediments measured by oxygen
microprofile, C-14 fixation, and oxygen exchange methods.
Limnol. Oceanogr. 26: 717-730.

Riemann, B. 1978. Carotenoid interference in the spectrophotometric
determination of chlorophyll degredation products from natural
populations of phytoplankton. Limnol. Oceanogr. 23: 1059­
1066.

Smith, J. H. C., and A. Benitez. 1955. Chlorophylls: analysis in
plant materials. pp. 142-196 in K. Peach and M. Tracey (eds.)
Moderne Methoden der Pflanzenanalyse, Vol. 4. Springer.



119

Sorensen, J., B. B. Jorgensen, and N. P. Revsbech. 1979. A compari­
son of oxygen, nitrate, and sulfate respiration in coastal
marine sediments. Microb. Ecol. 5: 105-115.

Strickland, J. D. H., and T. R. Parsons. 1972. A Practical Handbook
of Seawater Analysis. Fisheries Board of Canada Bulletin
167.

Talling, J. F., and D. Driver. 1961. Some problems in the estimation
of chlorophyll a in phytoplankton, pp. 142-146 ~ Proc. Conf.
Primary Production Measurement Marine Freshwater, Univ. Hawaii
u.S. A.E.C. Publication TID 7633.

TrUper, H. 1970. Culture and isolation of phototrophic sulfur
bacteria from the marine environment. Helgo. Wiss. Meere­
sunters. 20: 6-16.

TrUper, H. 1978. Sulfur metabolism, pp. 677-690 in R. C. Clayton and
W. R. Sistrom (eds.) The Photosynthetic Bacteria. Plenum
Press.

Tunnicliffe, V., and M. J. Risk. 1977. Relationships between the
bivalve Macoma balthica and bacteria in intertidal sediments:
Minas Basin, Bay of Fundy. J. Mar. Res. 35: 499-507.

Tuttle, J. H., and H. W. Jannasch. 1977. Thiosulfate stimulation of
microbial dark assimilation of carbon dioxide in shallow
marine waters. Microb. Ecol. 4: 9-25.

Uffen, R. L. 1978. Fermentative metabolism and growth of photo­
synthetic bacteria, pp. 857-872 in R. C. Clayton and W. R.
Sistrom (eds.), The Photosynthetic Bacteria. Plenum Press.

Uffen, R. L., and R. S. Wolfe. 1970. Anaerobic growth of purple
nonsulfur bacteria under dark conditions. J. Bacteriol.
104: 462-472.

Van Baalen, C. 1961. Studies on marine blue-green algae. Bot.
Mar. 4: 129-139.

van Gemerdan, H. 1974. Coexistance of organisms competing for the
same substrate: an example among the purple sulfur bacteria.
Microb. Ecol. 1: 104-119.

Van Raalte, C., W. C. Stewart, I. Va1iela, and E. J. Carpenter.
1974. A C-14 technique for measuring agal productivity in
salt marsh muds. Bot. Mar. 17: 186-188.



120

Van Raalte, C., I. Valiela, and J. M. Teal. 1976. Production of
epibenthic salt marsh algae: light and nutrient limitations.
Limnol. Oceanogr. 21: 862-872.

Vosjan, J. H. 1975. Respiration and fermentation of the sulfate­
reducing bacterium Desulfovibrio desulfuricans in a continuous
culture. Plant and Soil 43: 141-153.

Waterbury, J. B., and R. Y. Stanier. 1981. Isolation and growth of
cyanobacteria from marine and hypersaline environments, pp.
221-223 in M. P. Starr (ed.) The Prokaryotes. Springer­
Verlag. --

Widdel, F., and N. Pfennig. 1977. A new anaerobic, sporing,
acetate-oxidizing, sulfate-reducing bacterium, Desulfoto­
maculum (emend.) acetoxidans. Archiv. Mikrobiol. 112: 119-122.

Zinder, S. H., and T. D. Brock. 1978. Dimethyl sulphoxide reduction
by microorganisms. J. Gen. Microbiol. 105: 335-342.



TYPED BY: Carolyn Sherrell


