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Abstract

Commitment in monetary policy leads to equilibria that are superior to those
from optimal discretionary policies. A number of interest rate reaction functions
and instrument rules have been proposed to implement or approximate commit-
ment policy. We assess these optimal reaction functions and instrument rules in
terms of whether they lead to an RE equilibrium that is both locally determinate
and stable under adaptive learning by private agents. A reaction function that
appropriately depends explicitly on private expectations performs well on both
counts.
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1 Introduction

Many recent models of monetary policy emphasize the importance of forward looking
aspects of the economy, in which expectations of private agents significantly influence
the economic outcome. If expectations about the future are part of the equilibrating
mechanisms in the economy it is well known that standard intertemporal optimization
of economic policy by the government is in general subject to the problem of time
inconsistency, as was first pointed out by (Kydland and Prescott 1977). Lack of time
consistency means that a policy maker has incentives to deviate, in later periods, from
the optimal plan obtained in the first period. In contrast, discretionary policies are
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obtained through policy optimization separately in each period and are time consistent,
but typically the resulting sequence of discretionary policy decisions will not lead to the
overall intertemporal optimum of the economy. The losses from discretionary policies
can be quantitatively significant, and this has provided the impetus for finding ways to
achieve the optimum or at least to improve the outcome. The discussion is often framed
as the question of rules vs. discretion in policy making.

The tensions between the non-optimality arising from discretionary policy relative
to full optimality and the time inconsistency of fully optimal policies have also been
considered in the context of monetary policy. The first papers focused attention on
the so-called inflation bias that arises from overambitious government objectives with
respect to aggregate output, see the contributions by (Barro and Gordon 1983a) and
(Barro and Gordon 1983b) and the subsequent literature. In most recent work, the
problem of inflation bias has received less attention, as it is often assumed that the
policy maker does not have overambitious goals. Nevertheless, the issue of commitment
vs. discretion still prevails, since discretion leads to what is called a “stabilization bias”
and there are gains to commitment, see (Woodford 1999a), (Woodford 1999b), (Svensson
and Woodford 1999) and (McCallum and Nelson 2000) among others.!

It has been suggested by (Woodford 1999a) and (Woodford 1999b) that, to imple-
ment the commitment solution, monetary policy making ought be based on the timeless
perspective. This concept is a rule based policy that is obtained by respecting the op-
timality conditions from the full intertemporal optimization under commitment, except
for the current decision-making period. In other words, such a rule stipulates that the
policy maker follows “the pattern of behavior to which it would have wished to commit
itself at a date far in the past” (p.293 in (Woodford 1999a)). Recent work has shown that
the gains from committing to this policy, relative to the discretionary policies, can be
significant, see (McCallum and Nelson 2000). In this paper we will adopt the timeless
perspective formulation and refer to the corresponding optimal monetary policy with
commitment as the “commitment solution.”

Almost all of the recent literature on monetary policy, including all of the references
above, has been conducted under the hypothesis of rational expectations (RE). However,
this may not be an innocuous assumption as was explicitly shown by (Bullard and
Mitra 2001b) and (Evans and Honkapohja 2002). In the analysis of economic policy
the assumption of RE should not be taken for granted, since expectations can be out of
equilibrium, at least for a period of time, as a result of exogenous events such as structural
shifts in the economy. Economic policies should be designed to avoid instabilities that
can arise from expectational errors and the corrective behavior of economic agents in
the face of such errors.

The possibility of temporary errors in forecasting, and the consequent correction
mechanisms, have been widely studied in recent research using the adaptive learning ap-
proach.? For monetary policy (Evans and Honkapohja 2002) show that certain standard

!See (Clarida, Gali, and Gertler 1999) for a recent survey on this literature on monetary policy.
2(Evans and Honkapohja 2001) provides an extensive treatise on the analysis of adaptive learning
and its implications in macroeconomics. (Evans and Honkapohja 1999), (Evans and Honkapohja 1995),



forms of optimal discretionary interest rate setting by the central bank can lead to insta-
bility as economic agents unsuccessfully try to correct their forecast functions over time,
with the result that the economy may not converge to the desired rational expectations
equilibrium (REE). They also propose a new way for implementing optimal discretionary
policy that always leads to stability under learning. (Bullard and Mitra 2001b) consider
the stability of equilibria when monetary policy is conducted using some variant of the
Taylor interest rate rule. Bullard and Mitra argue that monetary policy making should
take into account the learnability constraints, which imply constraints on the parameters
of policy behavior.* A related concern addressed by (Bernanke and Woodford 1997),
(Woodford 1999b), (Svensson and Woodford 1999) and others is that it is desirable for
policy rules to yield determinacy, i.e. locally unique REE, to ensure that there are no
nearby suboptimal REE.

The research on adaptive learning and monetary policy has so far considered the
performance of discretionary optimal policies or ad hoc interest rate rules. A partial
exception is (Evans and Honkapohja 2002). However, they restrict attention to lim-
ited forms of commitment for which the REE takes the same form (but with different
parameter values) as the optimal discretionary equilibrium. Learnability of optimal pol-
icy with full commitment has not been analyzed thus far. In this paper our goal is to
study whether optimal monetary policy by the central bank is conducive to long run
convergence of private expectations to the optimal REE.

On intuitive grounds one might think that commitment favors stability under learn-
ing by leading to more forecastable dynamics of the economy than when policy is re-
optimized every period. We will argue that while this can indeed be the case, stability
depends critically on the way the monetary policy with commitment is implemented.
Certain standard forms of central bank reaction functions or instrument rules that ap-
proximate the policy target do not or do not always provide stability under learning.
However, there is another implementation, depending explicitly on private expectations,
that performs well in this respect. We propose a specific implementation of optimal
policy that always leads to both determinacy and stability under learning.

2 The Model

We use a linearized model that is very commonly employed in the literature, see (Clarida,
Gali, and Gertler 1999) for this particular formulation. The original nonlinear framework
is based on a representative consumer, a continuum of firms producing differentiated
goods under monopolistic competition and subject to constraints on the frequency of
price changes, as originally suggested by (Calvo 1983).*

(Marimon 1997), (Sargent 1993) and (Sargent 1999) provide surveys of the field.
3Other papers on monetary policy using the learning approach include (Bullard and Mitra 2001a),
(Mitra 2001), (Honkapohja and Mitra 2001), (Honkapohja and Mitra 2002) and (Carlstrom and Fuerst
2001). A predecessor to this work is (Howitt 1992), though he did not use the New Keynesian framework.
4See e.g. (Woodford 1996) for the nonlinear model and its linearization.



The behavior of the private sector is described by two equations
Ty = —p(is — Bfmee1) + B o + g1, (1)
which is the “IS” curve derived from the Euler equation for consumer optimization, and
T = AT + BE; T + uy, (2)

which is the price setting rule for the monopolistically competitive firms. Appendix
A.1.1 discusses further the interpretation of (1) and (2).

Here z; and 7; denote the output gap and inflation for period ¢, respectively. i; is the
nominal interest rate, expressed as the deviation from the steady state real interest rate.
The determination of 4; will be discussed below. E;z,;,, and Ejm;; denote the private
sector expectations of the output gap and inflation next period. Since our focus is on
learning behavior, these expectations need not be rational (E; without * denotes RE).
The parameters ¢ and A are positive and [ is the discount factor so that 0 < 5 < 1.

The shocks ¢g; and u; are assumed to be observable and follow

(2)=r(2)+(2) 8
r=(40)

0 <|ul <1,0<|p| <1andg ~ iid(0,02), U ~ iid(0,03) are independent white
noise. g; represents shocks to government purchases and or potential output. u; repre-
sents any cost push shocks to marginal costs other than those entering through z;. For
simplicity, we assume throughout the paper that p and p are known (if not, they could
be estimated).

Assume RE for the moment. Monetary policy is derived from minimization of a
quadratic loss function

where

Et Z 58 (ﬂ—?—&—s + aaj?—&—s)‘ (4)

s=0

This type of optimal policy is often called “flexible inflation targeting” in the current
literature, see e.g. (Svensson 1999a) and (Svensson 2001). « is the relative weight
on the output target and strict inflation targeting would be the case a = 0. Note
that, first, the policy maker is assumed to have the same discount factor as the private
sector and, second, the target value of the output gap is set at zero implying that
the classical problem of inflation bias does not arise.” Thus the target for output is

5See e.g. (Clarida, Gali, and Gertler 1999) for a discussion of the inflationary bias in the context of
this kind of model.



set at the flexible price output level. For brevity, the inflation target is set at zero
(introducing non-zero targets would not change the conclusions of our analysis regarding
determinacy and stability under learning). We treat the policy maker’s preferences as
exogenously given. It is also well known, see (Rotemberg and Woodford 1999), that the
quadratic loss function (4) can be viewed as an approximation of the utility function of
the representative consumer.’

The full intertemporal optimum under RE, usually called the commitment solution,
is obtained by maximizing (4) subject to (2) for all periods ¢,¢ + 1,¢ + 2,... The first
order conditions are given by’

20011 s + Awips =0 for s =0,1,2,. .. (5)
27Tt+3 + Wtys—1 — Wits = 0 for s = ]_, 2, . (6)

and
27Tt — Wt = 0. (7)

Here w; s, s =0,1,2, ..., denote Lagrange multipliers associated with the constraints (2)
for each time period.

The time inconsistency of the commitment solution is evident from (7), since this
places a requirement that is specific to the current period and is different from the
corresponding requirement (6) for later periods. The current decision places a constraint
for the future periods that is non-optimal when the future periods actually arrive. A
planned re-optimization for such a period would lead to violation of (6), so that the
optimal plan would not be continued.

As noted in the Introduction, the timeless perspective resolution to the problem of
the time inconsistency of optimal policy is that the policy maker should respect the
optimality conditions above, except for the current period when the optimization is
done. In our context this amounts to using (5) and (6) also for the current period (and
neglecting (7)). This yields the commitment optimality condition®

Ay = —a(zy — x4-1). (8)

We remark that (8) is sometimes called a “specific targeting rule” in the literature.
We next compute the REE of interest. It can be shown that the dynamic system in
z; and m; defined by (2) and (8) has a unique nonexplosive solution. This solution can

67t should be noted that, like much of the literature on monetary policy, we do not explicitly introduce
the budget constraint of the government to the analysis. This is justified by assuming that fiscal policy
is set “passively” in the sense of (Leeper 1991) and ensures that the intertemporal budget constraint of
the government is satisfied.

"See (Woodford 1999b), Section 3.1 for the derivation of the first order conditions using Lagrange
multipliers in a very similar setup.

8(Clarida, Gali, and Gertler 1999), p.1681 and (Woodford 1999a), appendix also derive this opti-
mality condition.



be expressed as a linear function of the state variables x; 1 and u; and is known as the
“minimal state variable” (MSV) solution (see (McCallum 1983)). To obtain it explicitly
we use the method of undetermined coefficients, expressing the REE in the form?’

zp = bymq + oy, (9)
T = bﬂ—CCt_l‘i‘Cﬂ—'LLt. (10)

Under RE we have Eymyy 1 = by (bypxy 1 + cpur) + crpug, so that substituting into (2) and
(8) yields

Ay = —al(by — D)xy g + cowyl,
Ty = )\(bm:ct_1 -+ CzUt) + ﬁ[bw(bmxt—l + Czut) + Cﬂ'put] + Ug.

This implies the system of equations

o
T — T \Uzr — 1 5
b S(be— 1)
Cr = —%cm, (11)

b7r = )\bq: + ﬁbﬂba/‘?
Cr = Aep+ B(brce +crp) + 1

that determine the coefficients in (9) and (10).
The first and third equations in (11) lead to a quadratic equation in b,

where v = 1 + § + A?/a. Given a solution for b,, the solution for b, is obtainable from
br = (a/A)(1 — by). Finally, the solutions for ¢; and ¢, are obtained from the second
and fourth equation in (11), which are linear, given the solution for b,. The quadratic
in b, has two solutions, but the solution of interest is'”

b, = (20) [y — (v* — 48)"%]. (12)

This delivers a stationary REE for all values of structural parameters, since 0 < b, < 1,
and corresponds to the policy optimum. We will therefore refer to the REE, given by
(9)-(10), (11) and (12), as the optimal REE.

3 Optimal Interest Rate Setting

Thus far we have formulated the concept of optimal monetary policy under RE and
reviewed the derivation of the corresponding REE using the existing literature. This

9The derivation follows closely (McCallum and Nelson 2000).
0The other root for b, is always larger than one and therefore generates explosive time paths.



derivation did not rely on the aggregate demand curve (1), which depends on the in-
terest rate and which can be used to determine the interest rate that implements the
desired optimal equilibrium. Computation of the appropriate interest rate will lead to a
functional relationship that will be called a reaction function, since it aims to set interest
rates so that the optimality condition (8) will be exactly met. Interest rate rules that re-
spond to endogenous and exogenous variables, but do not respect (8), are instead called
instrument rules and we will analyze some instrument rules below in Section 4. We note
that the terminology used by different authors appears to vary in the literature.!*

As has become apparent from the earlier literature (see the references below), interest
rate setting in the form of a reaction function can be implemented in different ways
depending on what is assumed to be known in the policy optimization. We now consider
three cases, following the analysis in (Evans and Honkapohja 2002) for discretionary
policy. For each form of the reaction function we will test its performance in two ways.

First, we will determine if the resulting REE is determinate. This means that it
is the unique REE under the reaction function. If a solution is indeterminate there
exist other stationary RE solutions nearby and, as is well known, these can include a
dependence on extraneous variables or “sunspots.” Second, we determine whether the
REE corresponding to the reaction function implementing optimal policy is stable under
adaptive learning by private agents. Here we formally analyze whether the RE solution
is E-stable, since E-stability is known to determine whether the solution is locally stable
if private update their forecasts using least squares or related learning schemes. We
remark that these are independent criteria: we will find both cases of indeterminate
but E-stable REE and cases of determinate but E-unstable REE, as well as cases where
these criteria agree. Our aim is to look for reaction functions for the interest rate that
are both determinate and stable under learning.

3.1 The Fundamentals Based Reaction Function

In the REE constructed above the inflation and output gap forecasts satisfy (9) and (10)
with the parameter values b, ¢;, b, and ¢,, where b, is given in (12) and

br = (a/A)(1—ba),

o = —[A+Bbx+ (1= Pp)(e/N)]

r = —(a/N)e,.
RE are thus given by

Et7Tt+1 - Brrgzwt—l + (BTI'E.’E + érrp)uh
By = biﬁtq + (bs + p)Catiy.

HOur terminology largely agrees with that of (Svensson and Woodford 1999) and (Svensson 2001).
They call the optimality condition (8) a “specific targeting rule” and the setting of the interest rate
instrument, with (8) satisfied, a “reaction function” of the policy maker.



Inserting these expectations and (9) into (1), and solving for the interest rate, yields

iy = VT 1+ Vg + Yy, (13)
with
Y, = Bw[@il(z_)w - 1)+ Z_)ﬂ], (14)
Y, = @}, (15)
v, = [br +@ (b +p—1)]Cs + Crp. (16)

We refer to (13) as the fundamentals based reaction function, since its derivation is based
solely on the model (1) and (2), the optimality condition (8) and the assumption that
the economy is in a stationary REE.

We emphasize that the derivation of this interest rate rule presupposes RE on the
part of both the private agents and the policy maker. In the REE specified it indeed
implements the optimal policy, as is evident from the way (13) was derived. (13) states
that interest rates are set so as to respond to lagged output gap and observable exogenous
shocks. The dependence on lagged output gap reflects the commitment aspect of the
optimal policy.'? We note that interest rate setting according to (13) is quite similar to
the “reaction functions” in equation (2.30) in (Svensson and Woodford 1999) and (3.5)
in (Svensson 2001). Their models differ from the model in this paper, but the setting of
interest rates according to lagged output and observable exogenous variables is the key
common feature for their setups and (13).!3

We are now ready to analyze the model with interest rate setting according to (13)
for determinacy and stability under learning. For this purpose, combining (1), (2) and
(13), we write the reduced form of the model in terms of general (possibly non-rational)
expectations as

It _ 1 @ Efx,
() = (3ot ) () m
_@wz 0 Lt— _pru
< =y, 0 > ( mi ) * < 1— \py, )“t-

3.1.1 Does the Fundamentals Based Reaction Function Yield Determinacy?

To analyze determinacy, we apply well-known methodology, see e.g. the Appendix of
Chapter 10 of (Evans and Honkapohja 2001). Key technical details are given in Appendix
A.2. The basic steps are to rewrite the model in first-order form and to compare the
number of non-predetermined variables with the number of eigenvalues of the forward-
looking matrix that lie inside the unit circle. When these numbers are equal the model is

2The corresponding interest rate function under discretion does not depend on z; 1, see (Evans and
Honkapohja 2002). In fact, the coefficient v, with b, = b, = 0, is identical to the discretionary case.

130ur model does not include the unobservable judgement variables that are introduced in (Svensson
2001) to capture further model uncertainties.



determinate and has a unique nonexplosive solution. Intuitively, each root inside the unit
circle provides a side condition that ties down one non-predetermined variable. If there
are fewer eigenvalues inside the unit circle than non-predetermined variables then the
model is indeterminate and there exist multiple nonexplosive solutions. In particular, in
the indeterminate case there exist multiple stationary solutions that depend on sunspot
variables. In contrast to the optimal REE, these other REE will not satisfy (8), the
necessary conditions for an optimum.'*

The conditions for determinacy are given in Appendix A.3. Whether the determinacy
condition holds depends on the structural parameters of the model, and we have

Proposition 1 Under the fundamentals based reaction function there are parameter
regions in which the model is determinate and other parameter regions in which it is
indeterminate.

As an illustration we consider three different calibrations found in the literature.

Calibration W: =099, p=(0.157)"" and A = 0.024.
Calibration CGG: 3=0.99, p=1and A =0.3.
Calibration MN: 8 =0.99, ¢ =0.164 and A = 0.3.

These are taken, respectively, from (Woodford 1999b), (Clarida, Gali, and Gertler 2000)
and (McCallum and Nelson 1999). Straightforward numerical calculations show that for
small values of « the steady state is indeterminate, while for larger values of a the model
is determinate. (With the calibrated parameter values the borderlines are approximately
a = 0.16, 7.5 and 278, for the three calibrations.) Determinacy thus arises only for some
values of a. The domain of values for o that gives determinacy depends sensitively
on the calibration, but in general sufficient flexibility in inflation targeting is needed to
ensure determinacy of equilibrium under the reaction function (13).1?

We remark that we are here treating o as a free policy preference parameter as is
often done in the applied literature. If instead (4) is obtained as the approximation to
the welfare of the representative consumer, the situation is more complicated as «a, ¢
and A all depend on deep preference and price setting parameters. Because there are
more than three deep structural parameters however, there are degrees of freedom for «
given 3, ¢ and \.16

14Other stationary REE that satisfy (2) cannot satisfy (8) because, as previously noted, the system
(2) and (8) has a unique stationary RE solution.

15Similar results are found if parameters other than « are varied. For example, for 3 = 0.99, A = 0.024
and « = 0.2, large values of ¢ lead to determinacy but small values of ¢ generate indeterminacy.

16In (Rotemberg and Woodford 1999) ¢ is determined by a parameter of the utility function for
aggregate consumption. « and \ depend on this and two other preference parameters as well independent
price setting parameters. A detailed analysis of the feasible range of («, p, \) would require a separate
study.



3.1.2 Instability Under Learning with the Fundamentals Based Reaction
Function

Derivation of the interest rate reaction function (13) presupposed that economic agents
in the model have RE. However, suppose now that private agents have possibly non-
rational expectations, which they try to correct through adaptive learning. We assume
that the policy maker does not explicitly take this private agent learning into account,
and continues to set policy according to (13). We are thus analyzing whether, when
interest rates are set according to (13), the optimal REE is robust to transient errors in
forecasting by private agents. (The formulation will be analogous in later sections when
some other reaction function or instrument rule for interest rate setting is considered.)

In this analysis we employ the standard methodology of adaptive learning in macroe-
conomics, see (Evans and Honkapohja 2001) for an extensive treatise on the subject.
We now briefly explain the formulation of the system under adaptive learning, and more
specifically under least squares learning, and provide a definition of the stability of an
REE under learning. For convenience, Appendix A.1 provides the general underpinnings
of adaptive learning and the derivation of the stability conditions for the settings needed
in this paper.

The central idea is the assumption that at each period t private agents have a per-
ceived law of motion (PLM) that they use to make forecasts. The PLM takes the form

Y = ar + biyr—1 + civy, (18)

where we are using the vector notation

. Tt . gt
= (2)m-(2)

The parameters (ay, by, ¢;) are updated over time using an econometric procedure such as
least squares. (This updating might for example be done by an econometric forecasting
firm that supplies forecasts to the agents). Note that for the reduced form (17) the
optimal REE can be written as

Yo = a+ by,_1 + cvy,

where @ = 0 and where the second column of b is zero. Thus the PLM (18) has the
same form as this REE, but in general the parameters (a, b, ¢;) need not equal the REE
values (0, b, ¢).

Given the PLM and the current value of v;, the forecast functions of the private
agents are Efy 1 = a; + b By, + ¢, Efvi4q or

Efyi1 = ar + b(ar + biye—1 + cv) + e Foy, (19)

where (a¢, by, ¢;) are the parameter values of the forecasts functions that agents have
estimated on the basis of past data up to and including period ¢ — 1. Note that we
are assuming that current exogenous variables, and lagged but not current endogenous

10



variables, are in the information set when forecasts are made. This is in line with much
of the literature, and we will refer to this as the main information assumption, though at
certain points in the text we will consider the implications of an alternative information
assumption in which expectations are allowed to depend on current endogenous variables.
Additional discussion of the information assumptions is given in Appendix A.1.1.

These forecasts are used in decisions for period ¢, which yields the temporary equilib-
rium, also called the actual law of motion (ALM), for y; = (z;, m;) with the given PLM.
The temporary equilibrium or ALM provides a new data point and agents are then as-
sumed to re-estimate the parameters (ay, by, ¢;) with data through period ¢ and use the
updated forecast functions for period ¢ + 1 decisions. Together with v;,; these in turn
yield the temporary equilibrium for period ¢ + 1 and the learning dynamics continues
with the same steps in subsequent periods. The REE (0,b, ¢) is said to be stable under
learning if the sequence (ay, by, ¢;) converges to (0, b, ¢) over time.

Appendix A.1 gives the technical details on how to obtain the stability conditions
for convergence to an REE. The central idea is to obtain a mapping 7" from the PLM
parameters (a, b, ¢) to the implied ALM parameters, T'(a, b, ¢). The REE corresponds to
a fixed point of this map and one can define a stability condition, known as E-stability,
in terms of a differential equation describing partial adjustment of the PLM parameters
towards the ALM parameters. E-stability turns out to provide the conditions for stability
of an REE under least squares and related learning rules.

Earlier work by (Evans and Honkapohja 2002) showed that discretionary policy,
using interest rate setting based on fundamentals, leads to instability because learning
by private agents fails to lead the economy to the REE corresponding to the optimal
policy without commitment. It would seem possible that the full commitment policy
implemented with (13) would perform better than discretion in this respect, because of
the feedback of the output gap on interest rates. However, we have:

Proposition 2 The fundamentals based reaction function leads to instability under learn-
ing for all structural parameter values.

The proof is given in the Appendix A.3.

The source of the instability lies in the interaction between the IS curve (1) and
the price setting curve (2). The simplest intuition is obtained from considering a PLM
(a, b, c) in which all of the parameters are held fixed at the optimal REE values, except
for a,, the intercept term in the PLM for inflation. In this case the mapping from PLM
to ALM becomes one-dimensional and takes the form

T..(az) = constant + (8 + A\p)as.

Since (3 is close to one and (3, A, ¢ > 0, for most parameter values we have 5 + Ay > 1.
A value of a, > 0 will therefore tend to be adjusted upward, away from the equilib-
rium value. Intuitively, a, > 0 corresponds to an exogenous positive shock to inflation
expectations. This directly increases inflation by (3 times the shock. In addition via
(1) the inflation expectations shock lowers the real interest rate, increasing output by ¢

11



times the shock, and through (2) this raises inflation indirectly by Ay times the shock.
If 3+ Ay > 1 then revisions to expected inflation in the direction of actual inflation will
lead to a cumulative movement away from equilibrium and we have instability.

Under least-squares learning the dynamics are, of course, much more complicated
and in particular all of the parameters (a, b, c) adjust to forecast errors. The proof of
Proposition 2 shows that under the fundamentals based interest rate policy, the system
is always locally unstable, even in the case 8 + Ao < 1.17

In summary, under private agent learning, the policy maker’s ability to commit to
optimal policies is not sufficient to stabilize the economy, if the policy reaction function
is based on observable exogenous shocks and the lagged output gap in the way suggested
by the standard theory for optimal policy. We emphasize that under the fundamentals
based rule the problem of instability arises even if the optimal REE is determinate.

3.1.3 Alternative Information Assumption

Thus far we have treated expectations as determined before the current values of en-
dogenous variables are realized, as is evident from (19). This would be natural if agents
obtain these forecasts from an econometric forecasting firm prior to entering the market
place. In this section we consider an alternative possibility that allows forecasts to be
functions also of the current values of endogenous variables, so that

Efyi1 = a+ by, + cFuy.

This means that current decisions and forecasts of the agents are simultaneously
determined. Private agents must now be regarded as entering the market place with
the most recent estimate of the forecast functions (obtained from the forecasting firm),
which are incorporated into the consumption and pricing plans. We remark that this
stronger information assumption gives additional scope to monetary policy, since changes
in interest rates will also have an immediate indirect effect on inflation and output
expectations.'®

Indeterminacy under the fundamentals based reaction function is, of course, not
affected since this is a property of the model under RE. Stability under learning can in
general be affected by this alternative information assumption. For the model at hand
we obtain:

Proposition 3 Under the alternative information assumption and the fundamentals
based reaction function there are parameter regions in which the model is stable under
learning and other parameter regions in which it is unstable under learning.

1TAn interesting question is whether instrument rules of the form i; = ¢ ;1 + wggt + ¥, u always
yield unstable REE under learning even when the coeflicients are not chosen to deliver the optimal
reaction function i.e. (14)-(16). It can be shown that stable (and determinate) cases do exist if the
parameters satisfy 1 — 3% — ApB > 0.

18 One could also consider reducing the amount of information available to agents when making pricing
and/or consumption decisions. There are several specific possibilities and this would require a separate
study.

12



We illustrate the result using the three calibrations in Section 3.1.1. Instability
arises for sufficiently small values of a. For the W, CGG and MN calibrations the
borderlines are approximately o = 0.004, 0.301 and 1.830, respectively. Thus stability
under learning, as well as determinacy, remains problematic since instability arises for
many values of the structural and policy parameters.

3.1.4 Price Level Formulation

The commitment optimality condition (8) can also be written in terms of the log of the
price level p; as

)\(pt - pt71) = —Oz(sct — xt,l).
This will be satisfied if

A
= ——p; + Kk,
a

for any constant k. This suggests that the optimal REE can be written in terms of z;
and p; and it can be verified that the optimal REE satisfy

Di = bypi—1 + Cpuy + Gy

Ty = bppi—1 + CoUy + Ay,

where b, is as before in (12), b, = —éBz, and the other parameters depend on the model
parameters and the value of k. This is a stationary process in (p;, z;). Calculating the
expectations Fyp;1, Firiyq, and inserting these and the REE p; equation into the IS
curve (1), we obtain an alternative fundamentals based reaction function'

it = NP + 7 g+ MU+ 1o, (20)
where
o= BB 1),
o= =B - Ve
m = (- Db

We focus on the issue whether the optimal REE becomes stable under learning if the
interest rate is set according to (20). We restrict attention to the main information as-
sumption in which forecasts depend only on exogenous and lagged endogenous variables.
The PLM takes the general form (18), where now

_(
Ut I 9

19 (Svensson 1999b) has analysed the merits of price level vs. inflation targeting.
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and the reduced form for this model is
Ty 1 %) Efziq 0 —p B},
— 21
(pt> ()\ ﬁ+)\<p)(E;‘pt+1>+<0 —B—=Ap ¢ Dt + @y
0 —PNp T PNy —¢@MNe
(0 1—Asm7p><pt—1>+(1—wnu U aen, )

In Appendix A.3 we show that the optimal REE are not always stable under learning.
In particular, instability occurs when ¢ > %

Thus reformulating the fundamentals based reaction function in terms of the exoge-
nous shocks and the lagged price level does not ensure stability under learning. We
now show how the instability problems associated with fundamentals based reactions
functions can be overcome if private expectations are observable and interest rate policy
conditions appropriately on their values.

3.2 An Expectations Based Reaction Function

The computation deriving the fundamentals based reaction function in Section 3.1 relied
heavily on the assumption that the economy is in the optimal REE. We now obtain a
different reaction function for interest rate setting, under optimal monetary policy, which
does not make direct use of the RE assumption. Instead, recognizing the possibility that
private agents may have non-rational expectations during the learning transition, the
policy rule is obtained by combining the optimality condition, the price setting equation
and the IS curve, for given private expectations.?’ This leads to a monetary policy in
which interest rates depend on observed private expectations as well as on fundamentals.
We call this rule the expectations based reaction function.

Formally, combine the price-setting equation (2) and the optimality condition (8),
treating private expectations as given. This leads to

A «

*
Ty = —Tt—1 — ﬁEt Tr1 — Ut -
a+ A7 LA

Next, substitute this expression in the IS curve (1) and solve for ¢;. This yields the
expectations based reaction function for interest rate setting:

it = 0r%1—1 + Ox Bl M1 + 0x B i1 + 09t + Ouuie, (22)

20This general approach was suggested and studied in (Evans and Honkapohja 2002) in the context of
discretionary policy. As before, we assume that the policy maker does not explicitly take into account
private agents’ learning rules in the policy optimization.
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where

6L = - 2N )
ola+ X%)
A
5, = 14— -
ola+ A7)
61‘ = Q0717
69 - 90_17
ola+ A7)

Looking at the rule (22) it can be seen that its coefficients stipulate a relatively large
response to expected inflation (6, > 1) and that effects coming from the expected output
gap and the aggregate demand shock are fully neutralized (6, = &, = ¢~'). The positive
coefficients on private expectations are crucial for ensuring stability of the REE and the
sizes of the coefficients are chosen so that the economy is led to the optimal REE.

The reduced form of the economy under (22) is

(2) - (¢ 2)(5)s
Ty 0 %z Efmi
LQ 0 Ti— —2 2
(2 o) () ()
a+X? -1 a+2?

We now consider both determinacy and the stability under learning for the expectations
based reaction function (22).

The methodology of Appendix A.2 can be applied to the reduced form (23). In
Appendix A.3 we obtain the following result.

Proposition 4 Under the expectations based reaction function (22) the REE is deter-
minate for all structural parameter values.

It is clearly a desirable property of our proposed monetary policy rule that it does
not permit the existence of other suboptimal stationary REE. However, as we have seen
in the case of the fundamentals based reaction function, having a determinate REE
does not always ensure that it is attainable under learning. To analyze stability under
learning we can again use the general matrix framework in Appendix A.1. As in the
preceding section we endow private agents with the PLM, compute the corresponding
forecast function and substitute them into (23). This yields the temporary equilibrium
or ALM and it is possible to study whether learning converges to the REE under the
expectations based reaction function (22).

The next proposition shows that our interest rate rule performs well (see Appendix
A.3 for the formal proof).

Proposition 5 Under the expectations based reaction function (22), the optimal REE
1s stable under learning for all structural parameter values.
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Partial intuition for this result can be seen from the reduced form (23). An increase
in inflation expectations now leads to an increase in actual inflation that is smaller
than the change in expectations since a3/(a 4+ A\*) < 1. This dampened effect arises
from the interest-rate reaction to changes in Ejm;;; and is a crucial element of the
stability result. Of course, stability under learning requires convergence over time of
all the PLM parameters, and Proposition 5 thus provides a remarkably strong result:
Under the interest rate setting rule (22), learning is stable and the economy is guided
specifically to the optimal REE, and this result holds for all possible values of the
structural parameters.

As one check on robustness of the result we consider also the alternative information
assumption that allows forecasts to be functions also of current endogenous variables.
We remark that in this case interest rates, inflation, output and expectations are all
simultaneously determined.

We continue to have stability under the expectations based reaction function:

Proposition 6 Under the alternative information assumption and the expectations based
reaction function (22), the optimal REFE is stable under learning for all structural pa-
rameter values.

Our analysis has shown that the reaction function (22) is a robust method for imple-
menting optimal monetary policy with commitment, passing both of the performance
tests we discussed earlier. Because the optimal REE is determinate under the expecta-
tions based reaction function, there are no nearby sunspot equilibria that are consistent
with the policy. Because it is stable under learning, the reaction function is robust to
expectational errors by private agents. These positive results complement the analysis
of (Evans and Honkapohja 2002) for the corresponding implementation of optimal dis-
cretionary policy and show that the policy optimum is obtainable with a well designed
interest rate rule.

We remark that we have chosen our recommended rule carefully to ensure both deter-
minacy and stability under learning for all parameter values. In the literature alternative
interest rate setting rules have appeared, which can be interpreted as expectations based
reaction functions but which do not meet our tests. For example, the interest rate reac-
tion function

. A _
1 = (1 — —)Etﬂ't+1 + 1gt- (24)
ap

is suggested in (Clarida, Gali, and Gertler 1999), Section 4.2.2. Replacing F;my,q with
Efm.q leads to a policy reaction function based in part on observed expectations. This
policy rule is consistent with the optimal policy under commitment under the RE as-
sumption. However, as Clarida, Gali and Gertler note, this reaction function can lead
to indeterminacy. Furthermore, it can be shown that if 3 4+ A\*/a > 1 the optimal REE
is not stable under learning.
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3.3 Discussion

We illustrate our results by two simulations using the CGG calibration of Section 3.1.1
and a = 0.5. Figure 1 plots results for the fundamentals based reaction function. The
figure shows an explosive path for the inflation rate over the first 30 periods. The
PLM coefficients, not shown, also follow explosive paths. Other simulations for the
fundamentals based rule show a variety of unstable paths. Of course, faced with such
a path, the policy maker would alter the policy rule and private agents would also be
motivated to alter their learning rule. However, Figure 1 illustrates the stability problems
inherent with the fundamentals based rules: under this policy rule the economy will be
subject to expectational instability.

Figure 2 shows the time paths for PLM parameters a and b from an illustrative
simulation under least squares learning when the policy maker employs the expectations
based rule. There is now near convergence of the PLM parameters over 250 periods.
(The PLM parameters ¢, not shown, also exhibit convergence). The numerical results
show that the economy asymptotically reaches the optimal RE solution. This is further
illustrated by Figure 3, which shows the deviation of x; and 7; from the REE path that
would be generated from the same sequence of stochastic shocks.?!

FIGURES 1, 2 AND 3 HERE

The key to our stability results is that monetary authorities raise interest rates,
ceteris paribus, in response to increases in inflation and output forecasts by private
agents, and lower interest rates in response to decreases in private expectations. Given
the fundamentals ¢, g; and z; 1, overly optimistic or pessimistic forecasts by private
agents have the potential to destabilize the economy under least squares learning. Our
expectations based policy is designed to offset this tendency and to guide the economy
to the optimal REE.

Several points should be made concerning our results. First, although we have demon-
strated our results in the context of least squares learning, the stability results will obtain
under a number of alternative schemes. They would, for example, hold for related learn-
ing schemes such as stochastic gradient learning, with convergence to the optimal REE if
our expectations based rule is followed. In fact, the stability results for the expectations
based reaction function hold even for some forecast rules that do not converge to RE.
For example, suppose private agents forecast both output and prices using the simple
adaptive expectations rules:

Tiy = YT+ (1 —)zy,

iy = ym—+ (1 — )7y,

2For discussion of recursive least squares algorithms, see (Evans and Honkapohja 2001). The simu-
lations require specification of the “gain” sequences, which measures responsiveness to forecast errors
in least squares type learning. In the simulation for Figure 1 the gain has been set at a small constant
value. In the simulation for Figures 2 and 3 the gain is set at a small constant value for the first 100
periods and then declines at rate ¢~
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where 0 < v < 1. This forecast rule has a venerable history, but it is not rational in
the current model. Nonetheless it can be shown that under our expectations based rule
the economy is stable for all 0 < v < 1, though it will not, of course, converge to the
optimal REE.

Second, since our recommended policy reaction function depends explicitly on private
expectations, it is desirable to have high quality observations or estimates of private
forecasts. However, our stability results extend to the case in which the reaction function
depends on private expectations observed with a white noise measurement error. In
this case there is convergence to an REE that deviates from optimality by an amount
depending on the measurement error variance.

Even if contemporaneous observations of expectations are not available, it may
nonetheless be possible to either fully implement or approximate our policy, provided
suitable auxiliary assumptions are made about the expectation formation process. Most
obviously, if it is known that agents make forecasts based on a PLM of the form (18),
with coefficients estimated using least squares, then policy-makers can construct accu-
rate proxies for private expectations. To do so, policy-makers would proxy Ejm;y1 and
Efxi1 by linear functions of y; | = (x4 1,7 1) and v, = (g4, u;) with estimated coef-
ficients, following the same procedure used by private agents. This procedure can be
shown to lead to the optimal REE even if policy makers have different initial coefficient
estimates or have different starting points for their data sets than private agents.??

Third, our discussion has implicitly assumed that the coefficients of the structural
model (1) and (2) are known to the policy maker. This, however, is stronger than
necessary. In our analysis of discretionary policy, in (Evans and Honkapohja 2002),
we showed that an expectations based policy could be implemented using estimated
structural parameters and that the REE was stable under simultaneous learning by
private agents and policy makers. An analogous argument is applicable here in the case
of optimal policy with commitment.

Finally, we remark that (Jensen and McCallum 2002) have recently shown that modi-
fying the optimality condition (8) to Am; = —a(z;— Bx;_1) appears to improve the policy
performance, because it partially compensates for the timeless perspective neglect of the
first period optimality condition. Fundamentals and expectations based reaction func-
tions can derived corresponding to this modified optimality condition. It can be shown
that our stability and instability results remain unchanged.

4 Approximating Optimal Policy

(McCallum and Nelson 2000) have recently suggested that, in place of interest rate
setting by a reaction function satisfying the optimality condition (8), there are well
performing instrument rules that can approximate this condition. These instrument
rules specify that the interest rate is moved towards a specified target value in response

22This was shown for the discretionary case in (Honkapohja and Mitra 2002).
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to deviations from the commitment optimality condition (8).2* In this section we analyze
the performance of such rules for determinacy and stability under learning.

4.1 The Approximate Targeting Instrument Rule

To begin, we consider instrument rules of the form?*
iv =1+ 0[m + (a/A)(xe — 24-1)) (25)

From now on we will call this rule the approrimate targeting instrument rule, or simply
the approxzimate targeting rule. This terminology describes better the underpinnings (25)
than the general term “instrument rule”, which is used in (McCallum and Nelson 2000).%°
Substituting (25) into the model (1)-(2) leads to the reduced form

1+ g\ o(1+0) Ty
-A 1 Tt
_ L Efx,
- (o ﬁ)(Ehﬁ)* (26)
a0 Ty gt
(0 ) )= ()

To assess determinacy we rewrite (26) in first-order form and compute the roots of
the forward-looking matrix. Details are given in Appendix A.3. The eigenvalues do not
lend themselves to clear theoretical results and thus we have studied them numerically.
For the calibrated examples in Section 3.1.1 we find numerically that the steady state
seems to be determinate for all values of o and 6.

Next, we consider learning stability of the REE under the instrument rule (25). We
apply the general methodology of Appendix A.1, see the explanations in Appendix A.3,
and restrict attention to the main information assumption. Again, theoretical results
cannot be obtained, so that numerical analysis must be used. Using the calibrations
given in Section 3.1.1 and setting p = p = 0.35 we have found stability under learning
for all values of o and 6.

We conclude that the approximate targeting rule (25) appears to lead to both deter-
minacy and stability under learning. Moreover it has the attractive feature that for large
0 it leads to REE that are close to the optimal policy under the timeless perspective.

2Gee (McCallum 1999) for a general discussion of this approach.

24(McCallum and Nelson 2000) include a constant real interest target but this does not affect our
results. They also suggest adding a lagged nominal interest rate to the rule, but this term is dropped in
their numerical results. For simplicity, we also ignore such an inertial term. (Bullard and Mitra 2001a)
analyze policies with interest rate inertia using the learning approach.

25(25) is a particular type of instrument rule in the terminology of (Svensson and Woodford 1999)
and (Svensson 2001). The widely studied Taylor rules constitute another example of instrument rules.
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4.2 Variants of the Approximate Targeting Rule

As pointed out by (McCallum and Nelson 2000), a difficulty with the approximate tar-
geting rule (25) is that it presupposes that the policy maker can observe current output
gap and inflation when setting the interest rate. (McCallum and Nelson 2000) propose
some alternative formulations that do not require observations on contemporaneous z;
and ;. We explore some of these in this section.

Several possibilities appear natural. One possibility is to replace actual values of x;
and 7; by their forecasts, i.e. set the interest rate according to

’it = Etﬂ’t + Q[Etﬂ-t + (Oé/)\) (Etib't — l‘t_l)].

Here F,(.) denotes the expectations of the policy maker. However, (McCallum and
Nelson 2000) find that this rule performs very poorly under REE. (McCallum and Nelson
2000) find that making the approximate targeting rules forward looking leads to better
performance under RE. In this case the policy maker adjusts the current interest rate in
response to the discrepancy from the optimality condition (8) anticipated for the next
period. This suggests interest rate setting according to

Z.t = Etﬂ't+1 + 9[E{7Tt+1 + (Oé/)\) (Etxt+1 - EtCCt)]. (27)

The expectations of the central bank could be modeled in several ways. One possi-
bility would come from working out the implied REE, i.e. setting E~’t7rt+1 = Fymiqq ete.
and substituting these expressions into (27). This would lead to an instrument rule of
the form ¢ = (o + (,9¢ + C,us. However, this is known to lead to both indeterminacy
and instability under learning, see (Evans and Honkapohja 2002). Another interpre-
tation is to assume that the expectations of the policy maker are formed like those of
private agents, i.e. Etytﬂ = Efy.11, by using vector autoregressions that are updated
by recursive least squares.?® This leads to an expectations based rule, which, however,
is different from the well-performing reaction function (22) considered above.

We next analyze determinacy and learnability of the economy with the instrument
rule (27) using the latter interpretation for expectations (and our main information
assumption). Substituting (27), with £,(.) = E*(.), into (1) yields the reduced form

T —apd\ Tt —pf Efxi
= 28
< s ) < —apl B — A Ermig + (28)
agpﬁ)\_l 0 Efx, n 1 0 Gt
apld 0 Efm Al u )
Details of the conditions for determinacy and learning stability are given in Appendix
A3.

Determinacy for the forward looking approximate targeting rule depends on the val-
ues of the parameters. We consider the alternative calibrated values in Section 3.1.1

26 A further possibility would be to assume that the policy maker uses its own forecasts in (27). See
(Honkapohja and Mitra 2002) for such an analysis for optimal discretionary policies and Taylor rules.
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and examine the issue numerically. Determinacy obtains for sufficiently small values of
the reaction parameter 6, but larger values of 6 lead to indeterminacy. The boundary
between determinacy and indeterminacy depends on the model parameters and, in par-
ticular, on the degree of flexibility « in inflation targeting. Indeterminacy obtains for
smaller values of # with more flexible inflation targeting as illustrated in the following
table for which the calibrations in Section 3.1.1 were used. (In the table § > 6 leads to
indeterminacy.)

Table 1. Approximate critical value 0 for indeterminacy

o J01 Jo5 [10 [20 |
W [0.019 | 0.004 | 0.002 | 0.001
CGG [ 1.223 [ 0.288 | 0.147 [ 0.075
MN ]| 7.460 [ 1.755 | 0.895 [ 0.453

The critical value of € depends sensitively on the values of structural parameters
A, and (3, as well as the policy parameter a. Here W, CGG and MN refer to the
three calibrations introduced in Section 3.1.1. Restricting 6 to be relatively small is
problematic since, under RE, rules with a small value of € imply that deviations from
optimality lead to only small corrections towards meeting the optimality condition. We
remark that (McCallum and Nelson 2000) often consider large values of the reaction
parameter in their quantitative analyses.

Numerical analysis also indicates that learning stability obtains for sufficiently small
values of the reaction parameter ¢, while larger values of 6 will destabilize the economy
under forward looking approximate targeting rules. To illustrate this we again revert
to the calibrations of Section 3.1.1 and we also set p = u = 0.35. The following table
illustrates the dependence of the critical value for # on the degree of flexibility « in
inflation targeting. (In the table § > @ leads to instability.)

Table 2. Approximate critical value  for learning instability

la 01 Jo0o5 |10 [20 |
W [ 0.055 ]0.012]0.006 ] 0.003
CGG [ 14.807 [ 1.084 [ 0.499 | 0.240
MN 90290 [ 6.609 [ 3.040 [ 1.462

The conclusion regarding learning stability of forward looking approximate targeting
rules (27) resembles our findings for the determinacy of these rules. Again, the results
depend sensitively on the model parameters, but large values of # imply instability. In
addition, less strict inflation targeting leads more easily to instability. Interestingly,
determinacy is here a more stringent requirement than stability under learning. This is
in contrast to the case of the fundamentals based reaction function in which under the
main information assumption, stability under learning is a stricter requirement.
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5 Concluding Remarks

This paper has analyzed determinacy and stability under learning for alternative interest
rate reaction functions or instrument rules that aim to implement optimal monetary
policy under commitment. Determinacy is desirable because it implies that there do
not exist other (nonoptimal) REE near the solution of interest. Stability under learning
is desirable because it indicates that if private agents follow least squares learning they
will converge over time to the optimal REE.

Our analysis leads to the conclusion that the two desiderata are met by a policy
that sets interest rates according to our expectations based reaction function. In this
monetary policy reaction function, interest rates respond to private expectations as well
as to fundamentals, i.e., exogenous shocks and the lagged output gap. This interest
rate reaction function performs well as it unambiguously delivers both determinacy and
stability under learning for the economy, with the economy converging over time to the
optimal REE.

Attempting to implement optimal policy through the fundamentals based formula-
tion does not perform well. Under this policy, problems with both indeterminacy and
instability under learning can occur, depending on values of model parameters and the
information available to agents under learning. The dependence on lagged output gap
implied by commitment is not sufficient to guarantee convergence under learning when
interest rate setting is carried out using the reaction function based solely on fundamen-
tals.

We also considered a class of approximate targeting instrument rules in which interest
rates respond to the deviation from the optimality condition. Such rules may or may
not be satisfactory, depending on the information available to policy makers at the time
interest rates are set. If contemporaneous observations of inflation and output gap are
available to the policy maker, our numerical results indicate that these instrument rules
do deliver both determinacy and stability under learning. However, it is arguably more
realistic to assume that this contemporaneous data is not available, and for this reason a
forward looking approximation of the target has been suggested as the basis for interest
rate setting. Both indeterminacy and instability problems can arise for such formulations
unless the reaction parameter is set at a sufficiently low value. However, for low reaction
parameters the resulting REE is likely to deviate substantially from the optimal policy.

More generally, we reiterate that in monetary policy design expectations must be
treated as potentially subject to deviations from rational expectations. This is neces-
sary even if private agents are following a natural econometric forecasting procedure
consistent with the REE. Optimal policy should be designed so that under private agent
learning the economy is guided to the REE.
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A Appendices

A.1 Stability Under Learning, General Methodology
A.1.1 Temporary Equilibrium

The starting point for models of adaptive learning is that agents have less information
than is presumed under RE. Instead, private agents optimize using subjective (possibly
non-rational) probability distributions over future variables. Given these subjective
distributions, the standard Euler equations provide necessary conditions for optimal
decisions, and we assume that the Fuler equations for the current period specify the
behavioral rule that gives current decisions as functions of the expected state next period.
These Euler equations are then supplemented by rules for forecasting next period’s values
of the state variables. Thus, given their forecasts, agents make decisions for the current
period according to the Euler equations. This kind of behavior is boundedly rational
but, in our view, reasonable, since agents are attempting to make optimal decisions
based on a perceived law of motion for the state variables.

For the model at hand we give a detailed discussion making use of the general equi-
librium framework presented in (Woodford 1996). Consider first the Phillips curve (2).
Let P; be the price being set by those firms that can do so, P; the average price index
and 7575 the deviation of the relative price P;/P; from its stationary value. Woodford
shows that P, can be expressed as a linear function of current output and discounted
sums of expected future outputs and inflations. This derivation can be viewed as using
subjective expectations that need not be rational. Assuming that the law of iterated
expectations holds and using the proportional relationship between inflation and 75t,
this equation can be rewritten with P, as a function of expected inflation Efmyy1 and
current output x;. This defines the optimal price setting schedule for P;, as a function
of P, x; and Ejm; 1, which firms take to the market place. In addition, we allow for
an exogenous shock u; to the price setting schedule. In the temporary equilibrium, with
identical firms and homogeneous forecasts and using again the relationship between Py
and inflation, we obtain (2).

Consider next the IS curve (1). The linearized Euler equation, which is standard,
is given by ¢, = Efciy1 — @(iy — Efm1). (This assumes that government purchases
enter the utility function in an additively separable way.) Let &, denote the proportion
of government purchases in GDP, and let ét = —1In(1 — &,). Then ¢; = x; — ét. For
convenience, we assume that ét follows a known AR(1) process ét = uét_l + ét. Then
Efciyn = Ef vy — EfE, ., which leads to the consumption schedule

¢ = Ejwepr — iy — Efmn) — pié,

submitted to the market place. Note that Efx:1; — uét is being used to forecast house-
hold’s own consumption in the following period. Although this will be determined by
the household itself, a forecast is required to determine optimal current consumption.
Finally, it is assumed that the government also comes to the market place with its plan
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to purchase the proportion &, of output. In the temporary equilibrium we obtain (1),
where g; = (1 — 1),

Given private expectations, these schedules together with the monetary policy rule
determine a temporary equilibrium according to (1)-(2). Thus the values of m;, z; and i,
are simultaneously determined through market clearing, in the usual way, by the pricing
and consumption schedules. To complete the description of the temporary equilibrium,
we need to be specific on the formation of expectations. The main case considered in
the text assumes that expectations are functions only of lagged endogenous variables
and observable current shocks, see (19), and are thus predetermined when the plans
are brought to the market. This would be natural if forecasts were obtained from
an econometric forecasting firm before going to the market place. In the alternative
formulation considered in Section 3.1.3, the agents instead obtain forecasting functions
from the firm and they plug in observations of current endogenous variables at the
market place.?” Thus in the alternative formulation 7, x;, i; and the forecasts are all
simultaneously determined.

Under either information assumption the temporary equilibrium for the current pe-
riod provides a new data point for the agents. Given this new data, the forecast functions
are updated at the start of the following period using standard adaptive learning rules
such as least squares. The question of interest is whether this kind of (adaptive) learn-
ing behavior converges over time to REE of interest. More specifically, the question is
whether the estimated parameters of the forecast functions converge over time to their
REE values. (Note that the REE can be viewed as a fixed point in the adjustment of
forecast functions.)

A.1.2 Stability Conditions

When agents adjust their forecast functions over time, the dynamics of the economy is
mathematically specified by a stochastic recursive algorithm, which is a special type of
nonlinear time varying stochastic system. The conditions for convergence of such dy-
namics are formally obtained from the local stability conditions of an associated ordinary
differential equation.?® The latter conditions are in turn given by what are called expec-
tational or E-stability conditions. (Evans and Honkapohja 2001) provides an extensive
analysis of adaptive learning and its implications in macroeconomics (see also the other
references in footnote 2). In this paper we will simply exploit this connection between
convergence of learning dynamics and E-stability and carry out the analysis directly in
terms of the E-stability conditions.
We derive E-stability conditions for a general matrix model

Yy =A+ ME;y11 + QE;y, + Ny,—1 + Puy. (29)

?"We remark that, since the model is based on representative household-producers, it seems most
natural to have the same information available in both pricing and consumption plans.

28 This approach was exploited in a learning context by (Marcet and Sargent 1989). (Woodford 1990)
used these techniques to study the stability of sunspot equilibria.
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Clearly, the model of monetary policy with different ways for setting the interest rate
lead to particular cases of (29) by setting

Tt Tt gt
= or Yy, = and v; = .
. <7Tt) . (pt> ' <“t>

Some reduced forms in the main text have ) = 0 or N = 0.
For (29) with N # 0 an MSV REE takes the form

Y =a+ Bytﬂ + cu;.

The description of learning proceeds as outlined in Section 3.1.2. To define E-stability
we drop the time subscript from the parameters of the PLM but otherwise proceed in
the same way to determine the temporary equilibrium or ALM for the given PLM. We
consider PLMs of the form

Yo = a+byi—1 + cuy. (30)

E-stability conditions can be obtained using the methods of Chapter 10 of (Evans and
Honkapohja 2001). As above, we get

Eiyiyn = (I+0b)a+b*y_1 + (be+ cF)y, (31)
Efyr = a+byi1+ cu (32)

Inserting these expectations into (29) yields the ALM
y=A+(Q+ MU +b)a+ (Mb*+ Qb+ Ny, 1+ (Qc+ M(bc + cF) + P)v,.  (33)
This equation defines the crucial mapping from PLM to ALM
T(a,b,c) = (A+(Q + M(I +b))a, Mb*> + Qb+ N,Qc + M(bc + cF) + P).

An MSV REE (a,b,¢) is a fixed point of this map.
E-stability of an REE (a, b, ¢) is defined as local asymptotic stability under the dif-
ferential equation

d
il —T - .
- (a,b,c) (a,b,c) — (a,b,c)

Specifically, we are led to the matrix differential equations

d
d—z = A+ (Q+MI+b)a—a
db
— = MV +Qb+N-b (34)
dr
% = Qc+M(bc+cF)+ P —c.
—
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The second equation in (34) is nonlinear and it must be linearized. Moreover, the second
and third equations in (34) are matrix values that need to vectorized.

We remark that the time concept 7 in (34) is notional time. Indeed, (34) is a
partial adjustment formula in time 7, where the parameters are gradually adjusted in
response to deviations from equilibrium. Such gradual adjustment also characterizes
the asymptotic behavior of least squares and related learning rules, since in such rules
parameter adjustment responds to forecast errors and, after a long history, new data
points have only a small effect on parameter estimates. See Chapter 2 of (Evans and
Honkapohja 2001) for a more detailed explanation of this connection.

The stability conditions can be stated in terms of the derivative matrices

DI, = Q-+ M(I+b) (35)
DI, = V@M+I@Mb+1®Q (36)
DT, = FOM+IMb+I1I®Q, (37)

where ® denotes the Kronecker product and b denotes the REE value of b.

Remark 7 The necessary and sufficient condition for E-stability is that all eigenvalues
of DT, — I, DTy, — I and DT, — I have negative real parts.?”

When N = 0, the MSV solution takes the form
Y = a + hvy, (38)

where in the REE the coefficients satisfy a = (M + Q)a and h = MhF + Qh + P.
For E-stability we use the PLM (38) with general values for a and h. Computing
expectations we get

Et*yt = a+ h'Ut,
E;(yt+1 = a+ hFUt

which gives the ALM
E-stability conditions now require that the eigenvalues of the matrices

DT,—-I = M+Q-1 (39)
DI, -~ = FoM+IQ—1I (40)

have negative real parts.

29We are excluding the exceptional cases where one or more eigenvalue has zero real part.
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A.1.3 Alternative Information Assumption

We now assume that the current values of the endogenous variables are in the information
set of the agents, so that necessarily () = 0 in the general model (29). The forecast
function from the PLM is now simply

Efyir1 = a+ by + cFu.

Substituting into (29) yields the mapping from the PLM to the ALM that takes the
form

T(a,b,c) = ((I — Mb) ' (A+ Ma),(I — Mb) ' N, (I — Mb) *(P + McF)).
The corresponding E-stability condition is that all the eigenvalues of
DT, —1 = (I—Mb)'M—1,
DT, —1 = [(I-Mb)™'N/®[(I—-Mb™'M]-1I,
DI.—1 = F'®[I-Mb M-I

have negative real parts.

A.2 Determinacy

The general methodology for ascertaining determinacy is given in the Appendix to Chap-
ter 10 of (Evans and Honkapohja 2001). For models with reduced form (29) we first focus
on the special case in which y; = (x4, m;), @ = 0 and the second column of N is zero.
Writing M = ( T2 ) N o= (™

M2y MM22 n21
introducing the new variable x = x,_;, and noting that for any random variable z
we have E;2;11 = 241 + €7, where Fief, , = 0, we can rewrite (29) as

0 . . .
0 ) assuming rational expectations,

1 0 —nn Tt mi1 myg 0 Ti41
0 1 —TMN12 Tt = mo1 Moo 0 Tt+1 + OthGT,
10 0 zk 0o 0 1 zh

where “other” includes terms that are not relevant in assessing determinacy. Assuming
nq; # 0 this can be rewritten as

Ty Tit1
T =J | w1 | +other (41)
xtL xtL+1
where
1 0 —nn - myr myz 0
J = 0 1 —MN12 mo1 1929 0
1 0 0 0 0 1
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Because this model has one predetermined variable, i.e. z, the condition for determi-
nacy is that exactly two eigenvalues of J lie inside the unit circle and one eigenvalue
outside. If one or no roots lie inside the unit circle (with the other roots outside), then
the model is indeterminate.

For models with N = 0 the reduced form can be rewritten as

(I — Q)yr = Myp1 + other

where 1; is assumed not to include predetermined variables. In this case the determinacy
condition is that J = (I — Q)~'M have both roots inside the unit circle. If one or both
roots lie outside the unit circle then the model is indeterminate.

A.3 Derivations

Proof of Proposition 1. Applying the methodology of Section A.2 to the reduced
form (17) we obtain

1

10 o, \ ' /1 ¢ 0
J = |01 \p, A B+Ap 0
10 0 0o 0 1

0 0 1

- 0 3 A

()t U, —(ptp,) !

Since the model has two free variables, determinacy requires that exactly two eigenvalues
of J are inside the unit circle. Straightforward numerical calculations for the calibrated
example show that two eigenvalues of J lie outside the unit circle, and one lies inside,
for small values of «, so that the steady state is indeterminate, while for larger values of
a exactly one root lies outside the unit circle, and the model is determinate. We remark
that continuity of eigenvalues implies that both regions contain open sets of parameters.

Proof of Proposition 2. We apply the general methodology outlined above in
Appendix A.1, when the general model (29) takes the specific form (17). In this case

@ =0 and
_ (1
vo= (5 s )

N = (_)\sz O) and

Po= (0 1—)\<p1/)u)'

Looking at the differential equations (34) defining E-stability in this case, it can be
seen that the equations for the elements of b are independent of the other variables,
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while the equations for a and ¢ are dependent on b but not on each other. Because of
this recursive structure, a necessary condition for stability is that DT, — I, evaluated
at the REE, has eigenvalues with negative real parts. This condition is equivalent to
tr(DT, — I) < 0 and det(D7T, — I) > 0.

Using the notation b = (b;;), j = 1,2 and evaluating variables at the REE, we have
bi1 = by, by = by and byy = byy = 0. The coefficient matrix for a in (35) for the reduced
form (17) has the explicit form

L bt @
DT I_()\(bm+1)+(ﬁ+)\go)bﬂ (5+A¢)—1>' (42)
The determinant of the coefficient matrix (42) is

(ﬁ_l)gr_spl;w_Agp<O

since the parameters ), ¢ are positive, 0 < 3 < 1 and the REE values b, and b, are
positive. The result follows.

E-Stability Analysis in Section 3.1.3. The result can be verified numerically by
computing the E-stability conditions in Appendix A.1.3.3

E-Stability Analysis in Section 3.1.4. A sufficient condition for instability is
that one of the eigenvalues of DT, — I = Q + M (I + b) — I has a positive real part.
Hence a sufficient condition for instability is that det(DT, —1) < 0. It is easily computed
that

S (0 byt b
@+ M{I+0) I_()\ Abp+(Agp+ﬁ)br—1)

and det(DT, —I) = —A(b,+ ¢b;). Using b, = —2b, we get det(DT, — 1) = —A(o—2)b,
Since 0 < b, < 1, this is negative when ¢ > ﬁ Since the trace is given by tr(D7T, — 1) =

(B4+A(¢—2))b, —1, it can be seen that the trace condition is satisfied if the determinant
condition is satisfied. Hence E-stability holds if and only if ¢ > %

Proof of Proposition 4. Applying the methodology of Section A.2 to the reduced
form (23) we obtain

—a -1 \3
10m; O—FO 00 1
J: Ola__:_l)\g 0 aiAg 0 - Oﬁ )\2
10 0 0o 0 1 0 & obx

The roots of J are 0 and (2a)* (a +af+ N+ \/(a +afB + A2 — 4a2ﬁ). It can be

verified that the nonzero roots are real and positive, with one root less than one and the

30The Mathematica routines are available on request.
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other root larger than one. Since exactly two roots are inside the unit circle, the result
follows.

Proof of Proposition 5. We note that in this case the matrices in the E-stability
conditions can be written as

—BAby —BAby
OH_AZB - 5%4—)\2 O 0
DTb — I = oz+>\75 a+)\IQ —1 0 0 R (43)
0 0 -1 0
0 0 0 -1
—\Bbx A3
a+A\? -1 _a—&—fQ O 0
B aBbr afp 1 0 0
DT, — I = a2 atA (44)
0 0 -1 0
0 0 0 -1
and
_ﬂ)‘ETr _ 1 _ﬂ)‘
DT, —T={ “Jm 57 | (45)
oty 2,
o+ o+

Looking at the coefficient matrix (43), it has two eigenvalues equal to —1 while the
remaining two eigenvalues are those of the 2 x 2 matrix in the top left corner of DT}, — I.
The trace of this 2 x 2 matrix is given by

—B\br afBb,
a+ 2 a4+ )\

-2,
which is negative since the only positive term is less than one. Its determinant is equal

to

BAbx afb,
a+ X a+2 7

which is positive as the only negative term is less than one absolute value (since 5 < 1
and 0 < b, < 1). Thus the matrix (43) is stable (i.e. all of its eigenvalues have negative
real parts).

Next, consider the matrices (44) and (45). The matrix (44) has two eigenvalues equal
to —1 and the remaining two are those of the 2 x 2 matrix in the top left corner. The
trace of this 2 x 2 matrix is

—\Gby afp

— 2.
a+ 2 a4+ )\
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The only positive term (if p > 0) is less than one and so the trace is always negative.
(If p < 0, all terms are negative.) Its determinant is

BAbx afp
- +1
a+ 2 a4\

and the only (possibly) negative term is less than one and so the determinant is positive.
Thus DT, — I is a stable matrix. Finally, we note that the top left 2 x 2 matrix with
p = 1 is identical to the matrix (45), so that the latter is also a stable matrix.

Proof of Proposition 6. The result is verified by computing the eigenvalues of
DT; — I for j = a,b,c of Appendix A.1.3 with M, N and P given by the reduced form
(23). Let A = a(1 + (1 —b,)3) + A* > 0. Apart from roots equal to —1 the eigenvalues

ares!

Ca(l=b0) + A2

A )
(148 =200+ (b — 1)267 + 20(1 + B(1 — b)) A + X!
A 7
_)\2 +a(l+B(1 = b, — p)) _)\2 +a(l+8(1—b, —p))
A ’ A '

The numerators of these expressions are all positive, so the result follows.
Details on Approximate Targeting Instrument Rules:

(1) Determinacy of the approximate targeting rule (25). Using a method
analogous to Section A.2 we rewrite (26) as

L+apdh™t o(1460) —apdr! T
- 1 0 T
1 0 0 z)
1 ¢ 0 Tt41
= 0 6 0 me1 | + other.
0 0 1 Th

This leads to an equation of the form (41) with

14+ apfA™" o(140) —apdr™ 1 ¢ 0
1 0 0 00 1
0 0 1
= 0 I} A
_A (CLHBEEON Mo H(140)3
acp@ af ave

31The Mathematica routines for computing the eigenvalues are available on request.
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Determinacy requires exactly two roots of J inside the unit circle.

(2) E-stability of the approximate targeting rule (25). The matrices in (26)
have the form @) = 0 and

v - <1+Oz909)\_1 ¢(1+9))‘1(1 w)’

)\ 1 0 B8
(T4 o(1+6) [ At 0
N = < )\ 1 0 0 and
o <1+Ozg09)\_1 ¢(1+9))1
)\ 1 '

It is not possible to derive theoretical results from the E-stability conditions in Remark
7 and so we evaluate the conditions numerically.

(3) Determinacy of the forward looking approximate targeting rule (27).
Write (28) in the form

1—apdX™' 0 T\ —apf\Tt = b Tii1
( —apl 1 ) ( m ) —apl B — O\ Mgl + other.

Determinacy requires that the eigenvalues of

g 1—apdA™ 0 ! —apd\Tt —pb
—aupl 1 —apl B — A
lie inside the unit circle.

(4) E-stability of the forward looking approximate targeting rule (27).
The reduced form (28) is of the form (29) with N = 0. From Section A.1 the required
conditions are that matrices (39) and (40) have negative real parts. First consider

(0 —pb
Mt Q= ( X ﬁ_w).
One of the eigenvalues of M + (@) is zero and the other one is § — @@\, which is always
less than one, so the first stability term is met.

It can be shown that the 4 x 4 matrix DT}, — I in (40) is block diagonal with the
upper left hand block given by

adp(l-p) _ _
DTy, — 1 = < ! afp >

0051 — 1) p(B—6Ap) — 1

and the lower right hand block formally the same except that p replaces u. We thus
only need to analyze DTy, — I. We have

Trace(DTyp — 1) = w + u(B — 0rp) — 2
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and

0N po + (1 = Bu)[A — abp(1 — )]
)\ )

Det(DTUL - ])) =

which show that the trace and determinant can have either sign, depending on parameter
values. One must thus revert to numerical analysis, as reported in the main text.
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