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It was hypothesized that intrapulmonary arteriovenous (IPAV) shunt pathways would be 

recruited at rest under various levels of acute hypoxic exposure.  Thirteen participants with 

healthy lung and cardiac function were studied to determine the changes in shunting induced by 

30 minute exposures to four levels of hypoxia: Fraction of Inspired Oxygen (FIO2)=0.16, 0.14, 

0.12, and 0.10.  It was found that the threshold of hypoxic exposure to induce IPAV shunting in 

all subjects occurs at an FIO2 of 0.10.  It was also observed that shunt magnitude increased over 

the 30 minute exposure and with more severe levels of hypoxia and a limitation with the current 

shunt assessment methodology was identified.  The development of a quantitative scoring 

system, using image analysis Adobe Photoshop software was then developed, which revealed 

trends in the data not previously noted due to limitations of the previous qualitative system 

used to assign shunt magnitude scores.  Specifically, an inverse relationship between arterial 

oxygen tension and shunt magnitude was identified using this quantitative system.  The 
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significance of these shunt pathways may be extensive as they could contribute to pulmonary 

gas exchange inefficiency and they may allow for emboli to bypass the pulmonary circulation 

resulting in neurological sequelae such as transient ischemic attacks, migraines and strokes. 
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Introduction: 

Previous studies have demonstrated that intrapulmonary arteriovenous shunting is 

induced by exercise in normoxia and hypoxia in the majority of individuals as well as at rest in 

hypoxia in some individuals (8).  In addition, a decrease in gas exchange as demonstrated by a 

widening of the AaDO2, can be caused by an increase in shunting.  Physiological factors that 

regulate the recruitment of these pathways have been postulated by authors of previous studies 

(10), but the exact mechanism remains unknown.  This could partially be due to the observed 

individual variability in response to incremental exercise and hypoxia in terms of shunt pathway 

recruitment (3).   

The original purpose of my study was to determine how IPAV shunt pathways respond 

to various levels of acute hypoxic exposure.  We specifically wanted to know how the response 

would change over time and if there was a physiologic threshold level of hypoxia that could 

induce shunting in all subjects at rest.  It was found that the mean shunt scores obtained with 

hypoxic exposure of fraction of inspired oxygen (FIO2) 0.10 and 0.12, representing moderate and 

severe levels of hypoxia respectively, were qualitatively higher at 30 minutes of exposure than 

at 5 minutes of exposure (4).  In addition, it was determined that an FIO2 of 0.10 resulted in a 

shunt score of more than 2 (which is the qualitative requirement for left sided contrast to be 

considered a shunt) at rest (3).   At exposures of lower FIO2s=0.10 and 0.12, a plateau in 

qualitative shunt socre was observed over the 30 minute time span, although the qualitative 

magnitude of shunting actually continued to increase.  However, due to the limitations of the 

current scoring system (0-5) this trend was not observed.  In addition, when evaluating the 

bubble data we noted that it was often subjectively difficult to determine the difference 

between a shunt score of 4 and a score of 5 when assigning a score.  It was also noted that 
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variability between images that were assigned the same shunt scores in the range of 3-5 

indicated potentially significant differences in the magnitude of shunting, reflecting the 

insensitivity of the current (0-5) scoring system.   

This prompted the development of a quantitative, less subjective, and more sensitive 

scoring system using image analysis software (Adobe Photoshop CS4), which became the 

primary focus of my work.  The previous qualitative scoring system relied on the Registered 

Diagnostic Cardiac Sonographer assigning scores of 0-5 to varying degrees of left sided contrast 

detected based on previously set qualifications.  The qualitative definitions of the scoring system 

developed by Lovering et al., J Physiol 2008, are based on both the amount and spatial 

distribution of bubbles in the left ventricle: a score of 0 represents a cloud of bubbles in the 

right heart, but no contrast in the left ventricle, 1 represents 1-3 bubbles in the left ventricle, 2 

represents 4-12 bubbles in the left ventricle, 3 represents more than 12 bubbles in the form of a 

bolus in the left ventricle, 4 represents more than 12 bubbles that fill the left ventricle 

heterogeneously, and 5 represents homogeneous filling of the left ventricle (9).  Although scores 

of 1 and 2 are quantitative, shunting is defined as achieving a shunt score of 2 or more (9).  

Therefore, this leaves only four out of six scores (one of which is quantitative) to represent all 

levels of physiologic shunting, which limits the sensitivity of the scoring system to reveal small 

changes in shunt magnitude.  Additionally, because this system involves subjective descriptive 

analysis and assigning each image a score, the difference in the degree of shunting between 

scores is not equal or linear.  A quantitative method was thus developed, employing a linear 0-

20 scoring scale in order to assess the magnitude of shunting with greater objectivity and 

sensitivity.  It was hypothesized that this will expand the shunt scores detected at lower levels of 
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hypoxia and may more accurately match the magnitude of shunting to changes in physiological 

variables such as arterial PO2 (PaO2), PASP, CO, etc. 

Background: 

Cardiopulmonary physiology and pulmonary gas exchange 

The basic physiological function of pulmonary respiration is to allow the exchange of gases, 

mainly oxygen (O2) and carbon dioxide (CO2), between the body and the environment.  Blood 

flows through the cardiopulmonary system as follows:  systemic veins carrying deoxygenated 

blood from the body converge into the inferior and superior vena cava, which empty into the 

right atrium of the heart.  Blood is then pumped to the right ventricle of the heart, which 

subsequently pumps deoxygenated blood to the pulmonary trunk.   The pulmonary trunk splits 

into two pulmonary arteries, one going to each lung (18).  Once inside the lung, blood flows 

through the pulmonary capillary beds, where it is oxygenated via gas exchange with air sacs 

inside the lung called alveoli.  The blood then enters the pulmonary veins, returning it to the left 

atrium of the heart, which subsequently 

delivers blood to the left ventricle.  

When the left ventricle contracts blood 

is pumped to the aorta and dispersed to 

the rest of the body. 

Figure 1. Blood flow through the cardiopulmonary system. 

Gas exchange within the lungs includes the diffusion of O2 into the blood and CO2 out of 

the blood.  Carbon dioxide is a waste product of metabolically active cells that use O2to produce 
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energy.  Blood circulation to the body delivers O2 for consumption and removes CO2.  The 

exchange of gases both systemically and in the lungs is driven by the difference in 

concentrations (partial pressures) of gases in the blood and gases in the lung or body tissues, 

otherwise known as concentration gradients.  Oxygen is carried in the blood by hemoglobin, a 

protein that regulates the uptake and release of oxygen under different chemical and physical 

constraints, as well as a dissolved gas.  CO2 is transported in the blood in three different ways: 

dissolved as CO2, bound to hemoglobin, or in the form of bicarbonate (14). 

Pulmonary gas exchange efficiency 

In healthy individuals at rest, pulmonary gas exchange is considered relatively efficient.  

However, gas exchange becomes less efficient as the body’s demand for oxygen increases, such 

as during high intensity exercise.  There are four variables that can potentially contribute to the 

decrease in gas exchange efficiency.  These variables include ventilation to perfusion 

nonuniformity gas diffusion limitations within the lungs; extrapulmonary shunt; and 

intrapulmonary shunt.  If pulmonary gas exchange were perfect, the diffusion of oxygen from 

alveoli into the blood would be perfect and there would be no difference in the alveolar partial 

pressure of O2 (PO2) and the arterial PO2.  Inefficient gas exchange leads to an increase in the 

alveolar-to-arterial PO2 difference (AaDO2).  This means that the difference between alveolar 

PO2 and the PO2 in arterial blood increases as gas exchange efficiency decreases (Fig. 2) (8).   
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Figure 2 (3). Increased AaDO2 during exercise defines decreases in gas exchange efficiency. 

 Ventilation to perfusion matching, the first factor contributing to gas exchange 

efficiency, refers to the ratio of the volume of air ventilating the alveoli to the volume of blood 

being pumped through the pulmonary capillaries (perfusion).  This is otherwise known as the VA 

/Q ratio, where VA refers to alveolar ventilation and Q refers to cardiac output (CO).  Cardiac 

output is the amount of blood that the heart pumps per minute.  In order for efficient gas 

exchange to occur the VA/Q ratio needs to be close to 1.0 (14).  In general, when pulmonary 

perfusion increases, such as during exercise, there is an equal or greater increase in alveolar 

ventilation.  Thus, ventilation to perfusion matching maintains proper oxygenation of and CO2 

removal from the blood (14). 

 Diffusion, the second variable affecting gas exchange efficiency, is determined by four 

variables that can affect the ability of oxygen and carbon dioxide to diffuse between the 

pulmonary capillaries and the alveoli.  These factors include the surface area for diffusion, 



6 

 

distance for diffusion, concentration gradient (partial pressures) of the gases, and the transit 

time of blood through the pulmonary capillaries.  The surface area of diffusion is maximized by 

the alveoli and capillaries.  The trachea branches into two primary bronchi, which further branch 

into secondary bronchi, and then again into bronchioles, which turn into alveolar sacs each of 

which contain individual alveoli that have very thin walls, allowing for efficient gas diffusion into 

and out of them (18).  The total surface area of all alveoli together equals roughly the size of a 

tennis court (14).  Blood exchanges gases with alveolar air through capillary walls.  Capillaries 

are fed by arterioles (small arteries), which are fed by arteries.   The walls of capillary vessels are 

made up of a very thin, single layer of epithelial cells, which are permeable to gases.  The 

extensive branching of airways and blood vessels allow the surface area of diffusion between 

capillaries and alveoli to be maximized, while simultaneously the distance for the diffusion of 

gases is minimized.   

These two physical factors allow for the efficient diffusion of gases, but the driving force 

of gas exchange is the concentration gradients of O2 and CO2 in the pulmonary capillary and the 

alveolus.  The partial pressure of an individual gas in air is equal to the product of the total 

pressure of the air (barometric pressure) and the fractional component of that particular gas.  

For example, the partial pressure of oxygen at sea level is: PO2= 760 mm Hg (absolute 

barometric pressure) X 0.2093 (fractional component of oxygen in the air).  So partial pressure 

of an inspired gas at sea level would be 760 – 47 Torr (water vapor pressure) x 0.2093.  The 

partial pressure of oxygen and carbon dioxide in alveolar gases are 105 mm Hg and 40 mm Hg, 

respectively.  In deoxygenated blood entering the lung they are 40 mm Hg for oxygen and 46 

mm Hg for carbon dioxide.  Gases diffuse from areas of high concentration to areas of low 
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concentration, meaning that oxygen will move into the blood and carbon dioxide will move out 

of the blood in the lungs.  This results in blood leaving the lung with a PO2 of 100 mm Hg and a 

PCO2 of 40 mm Hg.   

The ability of the blood to properly exchange gases is also dependent on the amount of 

time that the blood takes to travel through the capillaries, and thus the amount of time it has to 

equilibrate with the alveolar air.  This is referred to as transit time, which is regulated mainly by 

cardiac output and decreases with exercise as the velocity of blood being pumped through the 

pulmonary circulation increases.  The average transit time is about 750 ms, and at maximal 

exercise this can drop to 450 ms (2).  The amount of time it takes for gases completely 

equilibrate across the capillary-alveolar interface is dependent upon the oxygen tension in the 

air, which determines the driving force of oxygen into the deoxygenated blood.  At low levels of 

oxygen tension, such as at altitude, the time it takes to fully equilibrate gases increases, and 

thus maximal transit time during exercise may not allow for full oxygenation of blood, leading to 

arterial desaturation. However, at sea level, transit time is more than sufficient for complete gas 

exchange to occur. 

 Another component that can contribute to gas exchange inefficiency is non-pulmonary 

shunting, which is defined as shunt pathways that deliver deoxygenated blood directly to the 

left atrium without passing through the lungs (19).  There are three main types of non-

pulmonary shunt pathways including intracardiac, and bronchial and thebesian venous drainage.  

Intracardiac shunting occurs through the patent foramen ovale (PFO), which is a structure in the 

heart that allows for blood to pass between the right and left atrium in a fetus, as only 10% of 
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the cardiac output passes through the lungs during development (12).  This shunt pathway does 

not completely close in all adults (~30%), which results in small amounts deoxygenated blood 

from the right atrium passing directly to the left ventricle without being pumped through the 

lungs.  However, this is only possible if right atrial pressure exceed left atrial pressure. Thus, 

during rest PFO can contribute to the widening of the AaDO2, however it does not during 

exercise (Lovering AT, Stickland MK, Amann M, Carlson JM, Hokanson JS, and Eldridge MW. 

Experimental Biology. Poster, 2008).   Bronchial circulation and thebesian circulation shunts 

return blood directly to the left atrium of the heart via bronchial and thebesian veins.  

Therefore, they bypass pulmonary circulation, and decrease the PO2 of blood pumped to the 

rest of the body (19).  

The last factor that contributes to AaDO2 widening is intrapulmonary shunting, which is 

the main focus of my thesis.  Intrapulmonary shunts are defined as blood that enters pulmonary 

circulation but bypasses the pulmonary capillary beds and therefore does not participate in 

pulmonary gas exchange (2).  Deoxygenated blood is returned to the heart to be pumped to the 

rest of the body along with oxygenated blood that did participate in gas exchange in the lungs.  

This partially deoxygenated blood becomes progressively deoxygenated as working muscles 

continually extract oxygen.  Therefore, the amount of blood that travels through intrapulmonary 

shunt pathways does not need to be very large (about 1-3% of Q) in order for a significant 

change in AaDO2 to result (2).  Previously, the widening of AaDO2 during exercise has been 

attributed mostly to VA/Q mismatching.  However, not all individuals exhibit VA/Q mismatch 

during exercise, but all subjects show a widening of AaDO2 (2).  In addition, Stickland, et al. 

discovered that an AaDO2 of 12 Torr or more was always associated with intrapulmonary 
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arteriovenous shunting (19).  These data strongly suggest an important role of IPAV shunts in 

gas exchange.   

It is well known that AaDO2 widens during high intensity exercise.  During maximal 

exercise it has been determined that AaDO2 reaches values of 20-30 Torr in healthy, untrained 

subjects.  In elite athletes this may reach values up to 35-50 Torr (2) because the physical size of 

an individual’s lungs becomes the limiting factor to pulmonary gas exchange.  An important note 

to make regarding AaDO2 widening in relation to exercise is that it is mainly determined by 

intensity, or metabolic rate, not duration.  One study found that subjects working at a constant 

high intensity saw no changes in gas exchange efficiency over time, but with progressive, 

submaximal exercise, a direct correlation of increases in AaDO2 with increases in workload was 

observed (19).  Decreasing pulmonary gas exchange efficiency during exercise leads to exercise 

induced hypoxemia, which is characterized by a decrease in hemoglobin saturation (SaO2) of the 

arterial blood and results in a decrease in exercise capacity at a given workload (6).  

Consequently, this decrease in SaO2 leads to fatigue and reduced exercise performance. 

Anatomic evidence of shunt pathways 

 Large diameter intrapulmonary arteriovenous (IPAV) shunt pathways provide a non-

capillary passage for blood to bypass the alveoli and will therefore contribute to a decrease in 

gas exchange efficiency.  These have been identified in a wide range of species (11), (20) using a 

variety of methods.  Tobin et al. provided evidence for the existence and size of these pathways 

by studying plastic casts of human lungs and demonstrating that glass or resin beads of 50-200 

µm in diameter could bypass the pulmonary capillaries (21), (22).  The passage of micro bubbles 
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across the pulmonary vasculature in exercising humans was described by Eldridge et al. in 2004 

and it was estimated that the micro bubbles were 60-90 µm in diameter based on the survival 

time of bubbles suspended in blood (2).  Stickland et al. detected the passage of 25 µm polymer 

microspheres in exercising dog (20), while 50 µm mircoshperes were found to bypass isolated 

and perfused human and baboon lungs (11).  The passage of blood through inducible pathways 

would contribute to inefficient gas exchange in the lungs due to limited gas exchange through 

the thick vessel walls, estimated to be ~2.5 µm thick; whereas, capillary wall thickness, which is 

ideal for gas exchange, is only ~0.2 µm thick (19).  Although the exact identity of these IPAV 

vessels is unknown, IPAV shunts have been demonstrated in fetal lungs of both humans and 

lambs and in lambs have been shown to become inactive postnatally (13).  Accordingly, these 

remnant fetal vessels may possibly be the origin of IPAV shunts that are recruited during 

exercise and hypoxia adults (8).         

Physical characteristics of saline contrast bubbles 

Saline contrast bubbles that are injected into a peripheral vein are subsequently either 

trapped in the pulmonary vasculature or bypass it and end up on the arterial side of the 

circulation. Because polymer microspheres cannot be used in healthy human subjects, we utilize 

a technique using saline contrast micro bubbles. The exact size and number of saline contrast 

bubbles cannot be determined.  Therefore, it is necessary to consider “basic” physics of bubbles 

in order to estimate the size of bubbles that are seen in the left ventricle with saline contrast 

echocardiography.  The factors that will contribute to this include survival time of the bubble in 

the blood, blood flow rate, and vascular pressure.  It is very unlikely that microbubbles are 
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passing through pulmonary capillaries (7-10 um in diameter) as bubbles of this size have a 

survival time of only 190-550 ms in static fluid (10) and it takes at least 1 second for blood to 

pass from the right heart to the left heart a heart rate of 180 bpm (typically achieved only during 

maximal exercise).  During exercise blood flow and pressure would also be increased, resulting 

in a further reduction in survival time of these bubbles (8).  Additionally, if these bubbles could 

squeeze through capillaries, we would see their accumulation in the left heart in all subjects 

during every injection, yet we do not.  Similar blood flow and pressure changes occur in hypoxia, 

another condition that has been identified to recruit these passages (3). 

Recruitment of IPAV shunts during exercise and in hypoxia 

 Saline contrast echocardiography has detected the recruitment of IPAV shunt pathways 

to increase with exercise intensity in 90% of healthy humans (2).  This observed recruitment 

trend led authors to postulate that the vessels are opened with elevated pulmonary vascular 

pressure and blood flow velocities.  Lovering et al. determined that hypoxia augments IPAV 

shunt recruitment during exercise and opened these pathways in 3/9 subjects at rest, which 

supports a proposed mechanism governing the patency of the shunt vessels to acute hypoxic 

exposure leading to increased pulmonary vascular pressure as a result of hypoxic pulmonary 

vasoconstriction and cardiac output (8).  It was also determined from this study that at the same 

submaximal levels of exercise the degree of shunting was greater in hypoxia than in normoxia.  

The findings from this study provide evidence for the possible importance of IPAV shunts in 

providing a parallel vascular network for blood flow to bypass the pulmonary resistance vessels 

and minimize increases in pulmonary artery pressure, which could damage pulmonary 

capillaries or lead to pulmonary edema (8).  Although the majority of subjects showed increased 
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shunt recruitment in hypoxia at rest, some individuals did not respond to the lower oxygen 

tension (8).  The reasons for individual variability in the conditions under which shunt pathways 

are recruited in hypoxia remain unknown. 

Limitations with the use of saline contrast echocardiography to detect intrapulmonary 
arteriovenous shunting 

 Although the use of contrast echocardiography is well established, having been used as 

early as 1976 by Shub et al (17), one limitation is the inability to quantify the saline contrast 

detected in the left ventricle.  A major advance in echocardiography was the development of 

second harmonic imaging, which optimizes both penetration and spatial resolution of the image 

(16).  This enhances the signal-to-noise ratio, thereby improving the ability to see contrast 

bubbles in the left ventricle (8).  However, currently, only qualitative measures exist to indicate 

the degree of shunting.  Previously, this has been less of a problem as qualitative scores were 

sufficient to conclude an increase in shunt intensity with exercise intensity or the presence of 

shunting at rest in hypoxia.  However, now that intrapulmonary arteriovenous shunting is 

known to occur in these situations, attempting to tease out the mechanisms that regulate these 

pathways requires a more sensitive scoring system to elucidate the trends in physiological 

measurements that occur in relation to the degree and progression of shunting.  Thus, the goal 

of my project was to develop a more sensitive, objective technique for measuring left heart 

saline contrast.   
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Methods: 

 Approval for this study was obtained from the University of Oregon Institutional Review 

Board and informed consent forms were signed by all subjects.  All studies were performed 

according to the Declaration of Helsinki. 

Subjects  

 Fifteen healthy subjects (six female) between the ages of 18 and 40 volunteered to 

participate in this study.  A cardiopulmonary history was taken prior to participation and an 

echocardiographic screening was performed to eliminate subjects who dispayed the presence of 

a PFO or an arteriovenous malformation as these would display contrast in the left ventricle 

without IPAV shunting and contribute to inefficient gas exchange (8).  A positive PFO was 

defined as the presence of contrast bubbles appearing in the left ventricle in less than three 

heart beats (8).  Subjects with a PFO were excluded from the study as intracardiac shunting can 

contribute to gas exchange inefficiency (7).   

Pulmonary function and lung diffusion capacity for carbon monoxide testing 

 Preliminary tests performed include pulmonary function tests, whole body 

plethysmography, and diffusion capacity of carbon monoxide to ensure normal healthy lung 

function (7), to measure lung function, lung volume, and diffusion capacity of the lung.   

Resting hypoxia protocol 

 On the second study day, subjects rested in a reclined position and rolled 45 ˚ onto their 

left side in order to obtain a 4-chamber apical view of the heart.  They breathed four levels of 



14 

 

hypoxia with fractions of inspired oxygen (FIO2) of 0.16, 0.14, 0.12, and 0.10.  These gases 

containing different oxygen tensions were breathed in either an increasing or decreasing order 

(7).    Before each acute hypoxic exposure the subject breathed normoxic (room) air, with an 

FIO2 of 0.21, for five minutes.  This was followed by thirty minutes of breathing hypoxic air.  

Saline contrast bubbles were injected and an echocardiogram was simultaneously recorded at 

four minutes into normoxia (right before beginning exposure to hypoxia) and then every five 

minutes following the onset of hypoxic exposure.  After each hypoxic exposure subjects were 

given a 15 minute break breathing room air.     

Contrast echocardiography and the 0-5 scoring system 

The presence of IPAV shunting is detected using saline contrast echocardiography, 

which consists of manually agitating 3 mL of sterile saline with 1 mL of air, and forcefully 

injecting the saline contrast into a peripheral vein in the arm through an intravenous catheter 

while simultaneously imaging the heart using ultrasound (echocardiogram).  Shunting occurs 

when the microbubbles, seen as echoes in the image, appear in the left ventricle of the heart 

three cardiac cycles following the appearance of contrast bubbles in the right ventricle (8).  If 

there is no shunt, all micro bubbles will be filtered out by the pulmonary capillaries.  The 

presence of contrast bubbles in the left ventricle indicates that microbubbles were able to 

traverse the pulmonary circulation and pass into the pulmonary vein via patent IPAV shunt 

pathways (2).  Because this does not occur during rest, we know these bubbles do not traverse 

through capillaries.  The magnitude of a detected shunt is qualitatively assigned using the 0-5 

numbering system discussed above (9).  However, the exact size of the bubbles that reach the 

left ventricle is unknown (19). 
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Image analysis and the 0-20 scoring system 

 All images were obtained from the echocardiogram recordings and analyzed in Adobe 

Photoshop CS4 software.  Images were selected from frames previewed in Photoshop by 

scrolling through the series of images for each (~30 frames/second) cardiac cycles in each 

recording and visually determining the range of cardiac cycles in which the highest degree of 

shunting was detected.  From one of the cardiac cycles showing peak bubble density, the three 

individual frames with the most visible bubble contrast were selected for image analysis. 

However, if the magnitude of shunting was small enough that it was possible to count individual 

isolated bubbles in the left ventricle, only the frame with the most bubbles was selected.  In 

addition, image analysis was not subsequently performed on these images due to limitations 

and errors introduced by contrast of the left ventricle wall in the same area of interest as the 

contrast microbubbles.  Instead, the number of bubbles counted in the selected frame was 

multiplied by the average size of one bubble, which was found to be 15 pixels, and a score 

assigned based on the resulting value (scoring system described below). 

 The main goal of the processing of these images in Photoshop was to produce an image 

in which the relative features were adequately separated from the background, called 

segmenting, so that areas of interest could be automatically selected.  Although the segmenting 

methods enabled by Photoshop are superior to other image analysis programs, they cannot 

“provide absolutely exact measurements: Rather, the methods provide a consistent means for 

obtaining statistically accurate results when derived from a number of measured images”(15).   
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The images in this study were processed using a combination of two actions, each of 

which included a series of preset image manipulations.  The first action includes the use of a 

gradient map applied twice, once to the original image and then applied again on top of that 

image (Fig. 3.2).  The gradient map allows certain tones of gray to be mapped to gray.  The result 

is a sharper image with less “noise” and better defined bubble edges.  After the first action was 

played in Photoshop, the magnetic lasso tool was used to select the inside of the left ventricle 

(Fig. 3.3).  The settings used for the magnetic lasso tool are as follows: feather=0px, width=3px, 

contrast=70%, and frequency=68.  These preset values provided optimal sensitivity for selection 

around the inside of the left ventricle wall.  If the mitral valve (between the left atrium and left 

ventricle) was included in the selection and could easily be seen separately from bubbles the 

paint brush tool was used to paint over these areas with black in order to exclude these artifacts 

from the white contrast seen in the left ventricle.  The second action was then played, which 

started with transformation of the previous selection to 90% of its size in both height and width 

(Fig. 3.4) to eliminate any white contrast from the ventricle wall that may still be inside the 

original selection. This selection was then inverted, resulting in selection of the entire image 

around the left ventricle, allowing this area to be deleted from the images, which enabled 

subsequent automatic selection of only features within the left ventricle.  Before selection, a 

high pass filter was applied to the remaining pixels (Fig. 3.5), which further sharpens the 

image(15). The highlights that remained in the image were then automatically selected using the 

following set of commands in Photoshop: Select Color Range Highlights (Fig. 3.6).  The total 

area of this selection was then recorded in terms of the number of pixels using the 

measurement log. 
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Figure 3. Steps of in image analysis and segmentation procedure to obtain 0-20 shunt scores. 

This series of actions was performed on all three frames of the cardiac cycle that were 

previously selected.  The measurements obtained were put into excel, averaged and assigned a 

score of 2-20 based on the resulting average area of bubbles selected in the three peak contrast 

frames.  In the 0-20 scoring system each value represents a range of 100 pixels.  An area range 

of 1-100 pixels was assigned a score of 1, the range 101-200 a score of 2, and so forth.  This 

method of bubble selection and quantification provides an objective score that eliminates the 

biases associated with image interpretation and assignment of qualitative scores.  Additionally, 

the resulting scoring system is a linear quantification such that the difference in the degree of 

shunting between scores is uniform. 

 



18 

 

Results:     

Timing effect on magnitude of shunt over time 

Using the 0-5 scoring system, it was found that as the FIO2 decreased, and thus the 

severity of hypoxia increased, higher shunt scores were achieved.  The mean shunt score for 

each FIO2 at 30 minutes was 0.75 at FIO2=0.16, 1.5 at FIO2=0.14, 2.17 at FIO2=0.12, and 3.33 at 

FIO2=0.10 (Fig. 4).  In addition, the magnitude of shunting increased throughout the 30 minute 

exposure.  The increase in average shunt score from 5 to 30 minutes of hypoxic exposure was 

1.0 at FIO2=0.10, 1.25 at FIO2=0.12, 0.58 at FIO2=0.14, and 0.25 at FIO2=0.10.  These differences 

show an increasing change in shunt score with more severe levels of hypoxia with the exception 

of the increase seen at FIO2=0.10, which is 0.25 less than the increase seen at FIO2=0.12.  

Furthermore, there was a significant plateau in shunt magnitude over time at an FIO2 of 0.10, 

and at an FIO2 of 0.12.  However, at FIO2 of 0.14 and 0.16, where the degree of hypoxia was not 

as severe, the average shunt score was less than two for the entire duration and the plateau 

observed at lower FIO2 levels was not observed.  

Using the 0-20 scoring system it was seen that as the FIO2 level decreased the average 

shunt scores increased with the average of each hypoxic level at 30 minutes being 16 at 

FIO2=0.10, 7 at FIO2=0.12, 3 at FIO2=0.14, and 1.5 at FIO2=0.16 (Fig. 5).  In addition, it is seen that 

the magnitude of shunting increases with time over the 30 minute exposure.  The increase in 

average shunt score achieved between 5 and 30 minutes of hypoxic exposure was 9.5 at 

FIO2=0.10, 5 at FIO2=0.12, 2 at FIO2=0.14, and 0.5 at FIO2=0.10.  These differences show an 

increasing change in shunt score with more severe levels of hypoxia for all levels of hypoxic 
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exposure, which was not seen with the 0-5 scoring system.  Furthermore, the steep increase in 

shunt magnitude followed by a prolonged plateau at lower FIO2 levels is not observed using the 

0-20 scale.  In addition, at FIO2 of 0.14 and 0.16, where the degree of hypoxia was not as severe, 

the slopes of the curves are relatively flat compared to the slopes achieved at FIO2 of 0.10 and 

0.12. 

 

Figure 4. Average shunt score achieved over 30 minutes at various levels of hypoxic exposure using the 0-5 scoring 

system. Average shunt scores of11 subjects using the 0-5 scale breathing 4 levels of hypoxia for 30 minutes at rest. 

 

Figure 5. Average shunt score achieved over 30 minutes at various levels of hypoxic exposure using the 0-20 scoring 

system.  Analysis of shunt scores for 2 subjects using the 0-20 scale breathing four levels of hypoxia for 30 minutes at 

rest. Note the greater difference in shunt score from FIO2=0.12 to FIO2=0.10 as compared with the 0-5 scale in Fig. 4. 
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Figure 6.  a) Subject #1 at FIO2=0.10.  b) Subject #2 at FIO2=0.10.                                              

Using the 0-20 scale a better inverse relationship was observed between shunt score 

and SpO2 than was seen using the 0-5 scoring system (Fig. 6).  Figures 6a and 6b show the SpO2 

and the average shunt scores, using both the 0-5 and 0-20 shunt score scales, of two individual 

subjects achieved over the 30 minute hypoxic exposure.  In Fig. 6a the shunt magnitude plateaus 

at 20 minutes of exposure while achieving the highest possible shunt score of 5 for the 

remainder of the hypoxic stage.  Using the 0-20 scale, the magnitude of shunting continues to 

increase over the entire 30 minutes of exposure without a significant decrease in slope at later 

time points.  In addition, the SpO2 of this subject at FIO2=0.10 continues to decrease across the 

30 minute exposure.  Fig. 6b shows similar results for subject #2 at the same FIO2, in that using 

the 0-5 scale the subject plateaus at a score of 4 after only five minutes of exposure, whereas 

using the 0-20 scale no plateau is observed.  This individual also shows a similar SpO2 trend that 

continues to decrease across the 30 minutes of exposure and is inversely proportional to shunt 

score magnitude.      
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Figure 7. Quantitative vs. qualitative differences in shunt scores. 

Figure 7 illustrates the shunt scores presented in Fig. 6a starting with 5 minutes of 

hypoxic exposure.  The row showing the area indicates the number of white pixels selected in 

Photoshop, which represents the amount of area covered by bubbles.  The area selected in each 

frame continues to increase with increasing duration of hypoxic exposure.  It was observed that 

images obtained at 15, 20, and 25 minutes appeared similar and had the same or very similar 

shunt scores using the 0-5 score, but the area of bubbles in each is calculated to be significantly 

different, and were different using the 0-20 score.     

Identification of the threshold for hypoxia-induced IPAV shunting in humans at rest 

 Figure 8a shows the average shunt score (11 subjects) achieved at each given FIO2 as 

well as the corresponding %SpO2.  The red line indicates the threshold level of hypoxic exposure 

that was able to induce IPAV shunting in all subjects, defined as achieving a shunt score of 2 or 

greater using the 0-5 scoring system, was achieved at an FIO2 of 0.10.  In addition, it is seen that 

shunting is also induced in the later stages (20, 25, and 30 minutes) of hypoxic exposure to an 
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FIO2 of 0.12 in the majority of subjects.  Figure 8b also shows the average shunt score (2 

subjects) achieved at each FIO2 and the corresponding %SpO2.  In addition, the red line indicates 

that the threshold for hypoxia-induced shunting is still achieved at an FIO2=0.10 when the 0-20 

shunt scoring system is used.     

     
 

Figure 8. Threshold for hypoxia-induced shunting a) using the 0-5 scoring system and b) using the 0-20 scoring 

system. 

Discussion: 
 

 The purpose of this study was twofold.  First we sought to determine how the 

recruitment of intrapulmonary arteriovenous shunt pathways changes over time and at varying 

levels of hypoxic oxygen tensions in attempt to elucidate the physiological conditions that 

contribute to their regulation.  Breathing hypoxic gas caused an increase in shunting intensity 

over thirty minutes at all hypoxic levels tested (FIO2=0.16, 0.14, 0.12, and 0.10) whether subjects 

breathed gases in an ascending or descending order.   Additionally, average shunt score (n=11) 

increased with more severe levels of hypoxia at any given time point from 5-30 minutes 

following the onset of hypoxic exposure.  Although some individuals responded more than 

a) b) 
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others (i.e. shunting increased more or less intense) to given levels of hypoxic exposure, when 

exposed to an FIO2 of 0.10 shunting was induced in all subjects, making this level of hypoxic 

exposure the threshold that will induce shunting at rest in all individuals.  An inverse 

relationship between shunt score intensity and SpO2 was observed, but at the lower FIO2 levels 

of 0.12 and 0.10 SpO2 continued to decrease across the thirty minutes of exposure (Fig. 9) while 

shunt score plateaus at the higher intensities of shunting (Fig. 4).   

 

Figure 9. %SpO2 vs. time. This graph shows the % SpO2 achieved over time at each level of hypoxic exposure.  % SpO2 

continued to decrease throughout the duration of hypoxic exposure at FIO2s of 0.10 and 0.12, while % SpO2 values at 

FIO2s of 0.14 and 0.16 show a significant plateau in shunt magnitude across the duration of hypoxic exposure. 

Second, a new scoring system was developed in response to the observation that SpO2 

continually dropped across the 30 minutes of hypoxic exposure while shunt magnitude reached 

a plateau.  As oxygen tension plays a key role in the regulation of these shunt pathways, shunt 

magnitude would be expected to mirror SpO2.  The 0-20 scoring system developed using Adobe 

Photoshop CS4 software enabled the quantification of intrapulmonary arteriovenous shunting 

and revealed significant differences in individual shunting events that previously received the 

same qualitative score of 0-5.  The main difference between the shunt scoring systems exists at 
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higher levels of shunting, which includes events previously qualitatively scored as 3, 4, or 5.  

Shunt score bubble intensity continually increased throughout the duration of hypoxic exposure 

when the new quantitative shunt scoring system with a scale of 0-20 was employed to assign 

shunt scores.  In addition, as shunt score increased across the 30 minute hypoxic exposure using 

the new scoring system, a better matched inverse relationship between SpO2 and shunt score 

was observed (Fig. 6).  Although this further supports that oxygen tension plays a key regulatory 

role in the recruitment of these shunt pathways it is still unclear if this interaction directly 

affects characteristics of these shunt vessels or is indirect due the resulting effects of hypoxia on 

the rest of the pulmonary vasculature (i.e. non-shunt vessels) (8). 

Shunting increases with increasing hypoxic exposure duration: 

The increase in magnitude of shunt score achieved at longer exposures of hypoxia, and 

with increasing severity of hypoxia at all levels of FIO2, combined with the concomitant decrease 

in SpO2 over time, provides strong evidence that the recruitment of shunt pathways may be 

partially regulated, either directly or indirectly, by some oxygen sensor such as the peripheral 

chemoreceptors.  Peripheral chemoreceptors monitor the PO2 of the blood, and include two 

aortic and two carotid bodies that are located at the aorta and at the bifurcation of the common 

carotid artery respectively.  When a change in PO2 of the blood is sensed, peripheral 

chemoreceptors (mainly the carotid bodies) increase their firing rate resulting in an increased 

minute ventilation (volume of air breathed per minute).  Due to the fact that saline contrast 

bubbles are observed to be more dense when lower SpO2 values are reached, it is possible that 

this increase in shunting magnitude could be associated with increased activation of the 

peripheral chemoreceptors, thereby causing increased firing rate in an intensity dependent 
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manner (12).  Although the trend of increased shunting intensity with lower SpO2 values was 

observed in previous studies (8), (9) the development of the 0-20 scoring system, has allowed 

for a more detailed correlation to be observed between physiological variables such as 

pulmonary artery pressure, cardiac output, hypoxic ventilatory response, etc.  This better 

resolution of correlations will allow us to better formulate future research ideas and 

hypotheses. 

Determination of a threshold for hypoxia-induced intrapulmonary arteriovenous shunting 

 The highest level of hypoxic gas at which shunting was detected in all subjects was at an 

FIO2 of 0.10.  This represents severe hypoxic conditions as it is about half the normal content of 

oxygen in the air and corresponds to approximately 18,862 ft elevation.  Despite this seemingly 

high threshold, many subjects began shunting at low and moderate levels of hypoxia.  Two of 11 

began shunting at an FIO2 of 0.16, 5/11 started shunting at an FIO2 of 0.14, and 1/11 started 

shunting at an FIO2 of 0.12.  The majority of subjects started shunting before an FIO2 of 0.10, 

which indicates a wide range of sensitivity to hypoxia between individuals.  When this trend was 

evaluated with the new 0-20 scoring system no significant changes were noted in the general 

distribution of shunt scores 1 and 2, and as shunt onset is defined as achieving a score of 2 or 

greater using the 0-5 scale, the level of hypoxia at which shunting was detected in all subjects 

remained the same.  However, because the ventilatory response to hypoxia is highly variable 

between individuals, a more sensitive determination of shunt, such as the 0-20 scoring scale, 

will allow for a more adequate evaluation of the correlation between shunt score produced by 

each individual and that individual’s hypoxic chemosensitivity.  
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Image analysis: qualitative vs. quantitative scoring system 

 Saline contrast echocardiography is a well-established method of studying 

intrapulmonary shunting both during exercise and in hypoxic conditions (2), (8), (9), (10).  The 

detection of shunts with left sided contrast with an echocardiogram is critically important to the 

nature of this research.  However, previous studies that employed the use of saline contrast 

echocardiography to detect left sided contrast and the presence of intrapulmonary shunting 

were mainly aimed at determining the physiological conditions, such as exercise and hypoxia, 

which initiate recruitment of shunt pathways, and/or qualitatively change the degree of 

shunting.  Therefore, the necessity of a more sensitive scoring system was minimal (2), (10), 

(19), (9), (8).  One purpose of this study was to systematically determine specific changes in 

shunting at various hypoxic exposures, and the results obtained with the 0-5 scale were not 

sufficiently sensitive to accurately distinguish differences in shunt magnitude at higher levels of 

shunting.  The 0-20 quantitative scale was developed in attempt to remedy this.  In Fig. 7 this 

can be seen in images from one frame to the next, representing a sequence of shunt scores 

across a 30 minute exposure, are difficult to distinguish between.  However, when analyzed 

using Photoshop a significant difference in the amount of bubbles between very similar frames 

is detected.  This is noticed most at shunt scores of 4 and 5 as is represented by Fig. 10, which 

shows the distribution of 0-20 shunt scores at each level of previously assigned scores of 0-5.          
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Figure 10. 0-5 shunts scores vs. 0-20 shunt scores.  This graphs shows the individual 0-5 shunt scores achieved by 

subjects #1 and #2 at all FIO2s and time points against the corresponding 0-20 shunt score assigned.  The boxed points 

represent original shunt scores of 0-5 that did not change when 0-20 scores were assigned. 

Difficulties developing 0-20 shunt score scale 

 Using image analysis and manipulation to obtain quantitative measures is becoming 

increasingly utilized in scientific research (15).  However, there are parameters around which 

images can be manipulated to obtain quantitative information.  The use of echocardiography to 

detect intrapulmonary shunting poses some possible difficulties to the quantification of shunt 

scores; these include a) the low resolution of images, b) significant amounts of background noise 

at low shunt scores due to detection of cardiac wall motion, and c) “apparent contrast” within 

the left ventricle caused by movement of the mitral valve throughout the cardiac cycle.  Most of 

these problems were accounted for by combining the (0-20) method with the previous scoring 

system (0-5) of counting individual bubbles at very low shunt scores (0-1 on 0-5 scale), which 

generally consisted of between 1 and 15 bubbles.  This was possible due to the sufficient 
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dispersion and isolation of contrast bubbles within the left ventricle as well as minimization of 

the background from wall motion and mitral valve “noise” was minimized at higher shunt scores 

simply because in most cases the bubbles were covering these areas that could have potentially 

confounded our attempts to quantify saline bubble contrast. 

Conclusion: 

 From this study it was determined that the intensity of intrapulmonary arteriovenous 

shunt magnitude increased with time over a 30 minute acute hypoxic exposure and with 

increasing severity of hypoxia.  In addition, a threshold at which shunting occurs in all subjects 

was determined to occur at an FIO2=0.10.  The development of a quantitative scoring system 

using a scale of 0-20, enhanced the variability seen between shunt scores that were previously 

assigned qualitative values of 0-5, using a previously determined qualitative scoring system (9).  

The quantitative system revealed a significantly closer inverse relationship between % SpO2 and 

shunt score over time than was previously observed using the 0-5 scoring system.  In addition, it 

showed that shunt magnitude did not plateau over 30 minutes at moderate and severe levels of 

hypoxia as was previously noted using the 0-5 scale.  Furthermore, use of the 0-20 quantitative 

scoring system is expected to help identify other physiological factors governing the recruitment 

of IPAV shunt pathways that have yet to be determined.       

Applications: 

 As intrapulmonary arteriovenous shunts are associated with gas exchange efficiency in 

the lung they should be considered in regard to ascent to high altitude where the barometric 
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pressure drops with increasing elevation, thus decreasing the alveolar oxygen tension, and 

therefore, the amount of oxygen that can diffuse into the pulmonary capillary blood.  In 

response to hypoxia, the pulmonary vasculature vasoconstricts, resulting in increased 

pulmonary arterial pressure (PAP) (12).  Individuals prone to developing high altitude pulmonary 

edema (HAPE) also have higher PAP values and increased pulmonary vascular resistance.  This 

may indicate that these individuals to not have IPAV shunt pathways, which may act to mitigate 

the increase in PAP by decreasing the amount of blood flow that must pass through the 

pulmonary capillaries.  In this case, the shunts would act as a protective mechanism to the 

delicate and thin walled pulmonary capillaries that can be damaged with high vascular 

pressures, which can be associated with the development of HAPE(2). 

 Furthermore, recent evidence from Loeppky et al. supports the concept of IPAV shunt 

pathway recruitment at high altitudes as they determined a relationship between the 

development of acute mountain sickness (AMS) and decreasing SaO2 (5).  This may indicate that 

individuals that have IPAV shunts and recruit them under low levels of hypoxia may be more 

susceptible to developing AMS at lower altitudes than subjects who do not recruit IPAV shunts 

and don’t get AMS, as the presence of shunting has been shown to decrease arterial oxygen 

saturation.  With ascent to high altitude there is also an increase in the prevalence of 

neurological insults such as transient ischemic attacks, strokes and migraines (1).  This may be 

associated with the recruitment of IPAV shunt pathways in hypoxia that bypass the narrow 

pulmonary capillaries decrease the filtering ability of the lungs, thereby possibly allowing small 

blood clots and other emboli to travel through the lungs and adversely impact the brain.  
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Clearly, these inducible IPAV vessels have the potential to impact multiple physiologic and 

pathophysiologic processes in both health and disease states. 
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