Functions of organelle-specific nucleic acid binding protein families in chloroplast gene expression

Show full item record

Title: Functions of organelle-specific nucleic acid binding protein families in chloroplast gene expression
Author: Prikryl, Jana, 1976-
Abstract: My dissertation research has centered on understanding how nuclear encoded proteins affect chloroplast gene expression in higher plants. I investigated the functions of three proteins that belong to families whose members function solely or primarily in mitochondrial and chloroplast gene expression; the Whirly family (ZmWHY1) and the pentatricopeptide repeat (PPR) family (ZmPPR5 and ZmPPR10). The Whirly family is a plant specific protein family whose members have been described as nuclear DNA-binding proteins involved in transcription and telomere maintenance. I have shown that ZmWHY1 is localized to the chloroplast where it binds nonspecifically to DNA and also binds specifically to the atpF group II intron RNA. Why1 mutants show reduced atpF intron splicing suggesting that WHY1 is directly involved in atpF RNA maturation. Why1 mutants also have aberrant 23S rRNA metabolism resulting in a lack of plastid ribosomes. The PPR protein family is found in all eukaryotes but is greatly expanded in land plants. Most PPR proteins are predicted to localize to the mitochondria or chloroplasts where they are involved in many RNA-related processes including splicing, cleavage, editing, stabilization and translational control. Our results with PPR5 and PPR10 suggest that most of these activities may result directly from the unusually long RNA binding surface predicted for PPR proteins, which we have shown imparts two biochemical properties: site-specific protection of RNA from other proteins and site-specific RNA unfolding activity. I narrowed down the binding site for PPR5 and PPR10 to ∼45 nt and 19 nt, respectively. I showed that PPR5 contributes to the splicing of its group II intron ligand by restructuring sequences that are important for splicing. I used in vitro assays with purified PPR10 to confirm that PPR10 can block exonucleolytic RNA decay from both the 5' and 3' directions, as predicted by prior in vivo data. I also present evidence that PPR10 promotes translation by restructuring its RNA ligand to allow access to the ribosome. These findings illustrate how the unusually long RNA interaction surface predicted for PPR proteins can have diverse effects on RNA metabolism. This dissertation includes both previously published and unpublished co-authored material.
Description: xii, 83 p. : ill. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number.
URI: http://hdl.handle.net/1794/10614
Date: 2009-12


Files in this item

Files Size Format View
Prikryl_Jana_phd2009fa.pdf 1.450Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record