• Research Support
      • Starting Library Research
      • Research Guides
      • Subject Librarians
      • Digital Scholarship Center
      • Publishing & Copyright
      • Research Data Management
      • Study Skills & Campus Resources
      • Request a Purchase
    • Using the Libraries
      • Rooms & Study Spaces
      • Borrowing & Requesting
      • Connect from Off-campus
      • ILL (Interlibrary Loan)
      • Course Reserves
      • Technology, Printing, & Scanning
      • Tutoring at the UO Libraries
      • Classroom Technology Support
      • Canvas Support
      • Accessibility
    • Collections
      • Databases A-Z
      • Scholars' Bank
      • Videos, Music, Photos
      • Special Collections & University Archives
      • Unique Collections
      • Government Documents
      • Maps & Aerial Photography
      • Oregon Digital
      • Oregon Newspapers
    • Library Accounts
      • LibrarySearch Account
      • ILLiad Account (Interlibrary Loan)
      • Endnote Web (Citation Manager)
    • About
      • Hours & Locations
      • Staff & Department Directory
      • News & Events
      • Calendar
      • Mission, Values, & Strategic Directions
      • Diversity & Inclusion
      • Policies
      • Jobs
      • Comments & Suggestions
    • Chat/Ask Us
      • Email
      • Phone
      • Text
    View Item 
    •   Scholars' Bank Home
    • University Archives
    • University of Oregon Administration
    • The Office of Research, Innovation and Graduate Education
    • Theses and Dissertations
    • View Item
    •   Scholars' Bank Home
    • University Archives
    • University of Oregon Administration
    • The Office of Research, Innovation and Graduate Education
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Direct Synthesis of Thiolate-Protected Gold Nanoparticles Using Bunte Salts as Ligand Precursors: Investigations of Ligand Shell Formation and Core Growth

    View/Open
    Lohse_Samuel_E_phd2011sp.pdf (4.393Mb)

    Date
    2011-06
    Author
    Lohse, Samuel E., 1981-
    Metadata
    Show full item record
    Author
    Lohse, Samuel E., 1981-
    Abstract
    Applications of ligand-protected nanoparticles have increased markedly in recent years, yet their controlled synthesis remains an under-developed field. Nanoparticle syntheses are highly specialized in their execution and often possess significant limitations. For example, the synthesis of thiol-stabilized gold nanoparticles (AuNPs) with core diameters greater than 5.0 nm is difficult to achieve using existing methods. This dissertation describes the development of a synthetic strategy for thiolate-stabilized AuNPs over a wide range of core sizes using alkyl thiosulfates (Bunte salts) as ligand precursors. The use of Bunte salts permits the synthesis of larger AuNPs than can be achieved using thiols by allowing the AuNP cores to grow to larger diameters before the formation of the thiolate ligand shell. Chapter II details the development of a direct synthesis strategy using Bunte salts as ligand precursors that produces AuNPs with diameters up to 20 nm. Chapter III describes an investigation of the ligand shell formation that occurs during these syntheses. The ligand shell formation involves the adsorption of the Bunte salt to the AuNP surface, where it is converted to the thiolate. This conversion requires an excess of sodium borohydride in the synthesis of >5 nm AuNPs, but not for the synthesis of smaller AuNPs. This synthetic strategy was adapted for use in flow reactors to attain simultaneous AuNP synthesis and characterization. Chapter IV demonstrates that thiol-stabilized AuNPs can be synthesized in a microfluidic device with product monitoring provided by UV-vis absorbance spectroscopy. The development of a capillary flow reactor that permits the incorporation of new monitoring techniques is presented in Chapter V. The incorporation of Small-Angle X-ray Scattering (SAXS) analysis provides quantitative <italic>in situ</italic> determinations of AuNP diameter. The combination of synthetic control and monitoring makes capillary flow reactors powerful tools for optimization of NP syntheses and monitoring NP growth. In Chapter VI, the capillary flow reactor is used in an investigation of AuNP core growth. We also review AuNP growth mechanisms and show how to differentiate these using SAXS and UV-vis analysis. In these studies, AuNP growth is unexpectedly shown to involve a coalescence mechanism. This dissertation includes previously published and co-authored material.
    URI


    Collections
    • Chemistry Theses and Dissertations [156]
    • Theses and Dissertations [2590]

    My Account

    LoginRegister

    Browse

    All of Scholars' BankCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    Statistics

    View Usage Statistics

    CAMPUS

    • News
    • Events
    • Maps
    • Directions
    • Class Schedule
    • Academic Calendar

    RESOURCES

    • Webmail
    • Canvas
    • Duckweb
    • Find People
    • A–Z Index
    • UO Libraries

    RELATED INFORMATION

    • Library Accessibility
    • Privacy Policy
    • Giving
    UO Libraries
    1501 Kincaid Street
    1239 University of Oregon
    Eugene, OR 97403-1299

    T: 541-346-3053

    FacebookTwitterYouTubeInstagram

    CareersPrivacy PolicyAboutFind People
    University of Oregon
    ©University of Oregon. All Rights Reserved.

    UO prohibits discrimination on the basis of race, color, sex, national or ethnic origin, age, religion, marital status, disability, veteran status, sexual orientation, gender identity, and gender expression in all programs, activities and employment practices as required by Title IX, other applicable laws, and policies. Retaliation is prohibited by UO policy. Questions may be referred to the Title IX Coordinator, Office of Affirmative Action and Equal Opportunity, or to the Office for Civil Rights. Contact information, related policies, and complaint procedures are listed on the statement of non-discrimination.