Functionalized 2,6-Bis-(2-anilinoethynyl) Pyridine: Anion-Mediated Self-Assembly and Chemosensing
Loading...
Date
2011-12
Authors
Stimpson, Calden Nathaniel Carroll
Journal Title
Journal ISSN
Volume Title
Publisher
University of Oregon
Abstract
Mimicking the simplicity and efficiency of Nature in the synthesis and design of non-covalent receptors for ions in solution has piqued the interest of the chemical community since the mid 20th century. Until recently most of that focus has been on the binding, sensing, or remediation of inorganic cations instead of their anionic counterparts. With the realization of the role anions play in biological function or dysfunction, the development of selective probes for these highly solvated and elusive targets has become an important goal in the chemical and biological communities.
Concurrently the optoelectronic properties of planar extended π-systems have been exploited in the development of novel light absorbing and emitting organics and carbon-rich materials with tunable optical outputs. While many of these compounds exhibit desirable sensor properties, their insolubility and non-specificity has hindered the inclusion of these materials in probes for biologically relevant substrates. This body of research seeks to combine our knowledge of supramolecular structure-function relationships with novel extended aromatic topologies to yield highly specific probes for anions in competitive media that exhibit discrete, tunable outputs upon interaction with their target substrates.
Chapter I provides a brief overview of phenylacetylene topologies as they have been used in supramolecular assemblies and sensor design, with an emphasis on their use in anion-directed complexes. Chapter II focuses on our choice of specific arylethynylpyridine architectures upon which we can build a modular synthetic scheme to access working receptors. Chapter III encompasses the synthesis of urea and sulfonamide derivatives of phenylethynylpyridine and binding studies with these receptors and halide salts in organic media. Chapters IV and V focus upon the optoelectronic properties of these receptors, the tunability of their outputs and how we utilized their behavior in aqueous media to develop in vitro sensors for halides. This chapter concludes with recent results regarding their self-assembly on the micro-scale.
This dissertation contains my previously published and co-authored work.
Description
xxi, 199 p. : ill. (some col.)
Keywords
Analytical chemistry, Inorganic chemistry, Organic chemistry, Materials science, Applied science, Pure sciences, Anions, Cellular imaging, Self-assembly, Chemosensing, Sensors, Bis-(2-anilinoethynyl) pyridine