Browsing Mathematics Theses and Dissertations by Subject "Approximate conjugacy"
Now showing items 11 of 1

Sun, Wei, 1979 (University of Oregon, June , 2010)[more][less]Sun, Wei, 1979 20101222T01:32:21Z 20101222T01:32:21Z 201006 http://hdl.handle.net/1794/10912 vii, 124 p. : ill. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. This dissertation is a study of the relationship between minimal dynamical systems on the product of the Cantor set ( X ) and torus ([Special characters omitted]) and their corresponding crossed product C *algebras. For the case when the cocyles are rotations, we studied the structure of the crossed product C *algebra A by looking at a large subalgebra A x . It is proved that, as long as the cocyles are rotations, the tracial rank of the crossed product C *algebra is always no more than one, which then indicates that it falls into the category of classifiable C *algebras. In order to determine whether the corresponding crossed product C *algebras of two such minimal dynamical systems are isomorphic or not, we just need to look at the Elliott invariants of these C *algebras. If a certain rigidity condition is satisfied, it is shown that the crossed product C *algebra has tracial rank zero. Under this assumption, it is proved that for two such dynamical systems, if A and B are the corresponding crossed product C *algebras, and we have an isomorphism between K i ( A ) and K i ( B ) which maps K i (C(X ×[Special characters omitted])) to K i (C( X ×[Special characters omitted])), then these two dynamical systems are approximately K conjugate. The proof also indicates that C *strongly flip conjugacy implies approximate K conjugacy in this case. We also studied the case when the cocyles are Furstenberg transformations, and some results on weakly approximate conjugacy and the K theory of corresponding crossed product C *algebras are obtained. Committee in charge: Huaxin Lin, Chairperson, Mathematics Daniel Dugger, Member, Mathematics; Christopher Phillips, Member, Mathematics; Arkady Vaintrob, Member, Mathematics; LiShan Chou, Outside Member, Human Physiology en_US University of Oregon University of Oregon theses, Dept. of Mathematics, Ph. D., 2010; Tracial rank Approximate conjugacy C*algebras Minimal dynamical systems Cantor set Torus Mathematics Theoretical mathematics Crossed product C*algebras of minimal dynamical systems on the product of the Cantor set and the torus Thesis
Now showing items 11 of 1