Browsing Mathematics Theses and Dissertations by Author "Wilson, James B., 1980"
Now showing items 11 of 1

Wilson, James B., 1980 (University of Oregon, June , 2008)[more][less]Wilson, James B., 1980 20090115T00:44:03Z 20090115T00:44:03Z 200806 http://hdl.handle.net/1794/8302 viii, 125 p. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. Finite p groups are studied using bilinear methods which lead to using nonassociative rings. There are three main results, two which apply only to p groups and the third which applies to all groups. First, for finite p groups P of class 2 and exponent p the following are invariants of fully refined central decompositions of P : the number of members in the decomposition, the multiset of orders of the members, and the multiset of orders of their centers. Unlike for direct product decompositions, Aut P is not always transitive on the set of fully refined central decompositions, and the number of orbits can in fact be any positive integer. The proofs use the standard semisimple and radical structure of Jordan algebras. These algebras also produce useful criteria for a p group to be centrally indecomposable. In the second result, an algorithm is given to find a fully refined central decomposition of a finite p group of class 2. The number of algebraic operations used by the algorithm is bounded by a polynomial in the log of the size of the group. The algorithm uses a Las Vegas probabilistic algorithm to compute the structure of a finite ring and the Las Vegas MeatAxe is also used. However, when p is small, the probabilistic methods can be replaced by deterministic polynomialtime algorithms. The final result is a polynomial time algorithm which, given a group of permutations, matrices, or a polycyclic presentation; returns a Remak decomposition of the group: a fully refined direct decomposition. The method uses group varieties to reduce to the case of p groups of class 2. Bilinear and ring theory methods are employed there to complete the process. Adviser: William M. Kantor en_US University of Oregon University of Oregon theses, Dept. of Mathematics, Ph. D., 2008; Computer science Mathematics pgroups Jordan algebras Group decompositions Central products Direct products Algorithms Group decompositions, Jordan algebras, and algorithms for pgroups Thesis
Now showing items 11 of 1