Understanding the Formation of Kinetically Stable Compounds and the Development of Thin Film Pair Distribution Function Analysis
Loading...
Date
2017-09-06
Authors
Wood, Suzannah
Journal Title
Journal ISSN
Volume Title
Publisher
University of Oregon
Abstract
Navigating the synthesis landscape poses many challenges when developing novel solid state materials. Advancements in both synthesis and characterization are necessary to facilitate the targeting of specific materials. This dissertation discusses the formation of chalcogenide heterostructures and their properties in the first part and the development of thin film pair distribution function analysis (tfPDF) in the second part.
The heterostructures were formed by the self-assembly of designed precursors deposited by physical vapor deposition in a modulated elemental reactants approach, which provides the control and predictability to synthesis. Specifically, a series of (BiSe)1+δ(TiSe2)n, where n = 2,3,&4, were synthesized to explore the extent of charge transfer from the BiSe to TiSe2 layers. To further explore the role Bi plays in charge donation, a family of structurally similar compounds, (BixSn1-xSe)1+TiSe2 , where 0≥x≥1, were synthesized and characterized. Electrical measurements show doping efficiency decreases as x increases, correlated with the structural distortion and the formation of periodic antiphase boundaries containing Bi-Bi pairs. The first heterostructures composed of three unique structural types were synthesized and Bi2Se3 layer thickness was used to tune electrical properties and further explore charge transfer. To better understand the potential energy landscape on which these kinetically stable compounds exist, two investigations were undertaken. The first was a study of the formation and subsequent decomposition of [(BiSe)1+δ]n(TiSe2)n compounds, where n= 2&3, the second an investigation of precursor structure for thermodynamically stable FeSb2 and kinetically stable FeSb3.
The second section describes the development of thin film pair distribution function analysis, a technique in which total scattering data for pair distribution function (PDF) analysis is obtained from thin films, suitable for local structure analysis. This study illustrates how analysis of the local structure in amorphous precursor films can help to understand the crystallization processes of metastable phases and enables a range of new local structure studies of thin films. tfPDF was then demonstrated on In-Ga-O film materials and compared to traditional powder PDF analysis. This highlights differences between the products, and the utility of tfPDF to determined structural features of amorphous materials.
This dissertation includes previously published and unpublished co-authored materials.