Faculty Works
Permanent URI for this community
Browse
Browsing Faculty Works by Author "Allgaier, Markus"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Diffuse optics for glaciology(Optical Society of America, 2021-06) Allgaier, Markus; Smith, Brian J.Optical probing of glaciers has the potential for tremendous impact on environmental science. However, glacier ice is turbid, which prohibits the use of most established optical measurements for determining a glacier’s interior structure. Here, we propose a method for determining the depth, scattering and absorption length based upon diffuse propagation of short optical pulses. Our model allows us to extract several characteristics of the glacier. Performing Monte Carlo simulations implementing Mie scattering and mixed boundary conditions, we show that the proposed approach should be feasible with current technology. The results suggest that the optical properties and geometry of the glacier can be extracted from realistic measurements, which could be implemented with a low cost and small footprint.Item Open Access Direct measurement of optical properties of glacier ice using a photon-counting diffuse LiDAR(Cambridge University Press, 2022-04) Allgaier, Markus; Cooper, Matthew G.; Carlson, Anders E.; Cooley, Sarah W.; Ryan, Jonathan C.; Smith, Brian J.The production of meltwater from glacier ice, which is exposed at the margins of land ice during the summer, is responsible for a large proportion of glacier mass loss. The rate of meltwater production from glacier ice is especially sensitive to its physical structure and chemical composition which combine to determine the albedo of glacier ice. However, the optical properties of near-surface glacier ice are not well known since most prior work has focused on laboratory-grown ice or deep cores. Here, we demonstrate a measurement technique based on diffuse propagation of nanosecond-duration laser pulses in near-surface glacier ice that enables the independent measurement of the scattering and absorption coefficients, allowing for a complete description of the processes governing radiative transfer. We employ a photon-counting detector to overcome the high losses associated with diffuse optics. The instrument is highly portable and rugged, making it optimally suited for deployment in remote regions. A set of measurements taken on Crook and Collier Glaciers, Oregon, serves as a demonstration of the technique. These measurements provide insight into both physical structure and composition of near-surface glacier ice and open new avenues for the analysis of light-absorbing impurities and remote sensing of the cryosphere.Item Open Access Temporal mode transformations by sequential time and frequency phase modulation for applications in quantum information science(Optica Publishing Group, 2020-12-04) Ashby, James; Thiel, Valérian; Allgaier, Markus; d'Ornellas, Peru; Davis, Alex O. C.; Smith, Brian J.Controlling the temporal mode shape of quantum light pulses has wide ranging application to quantum information science and technology. Techniques have been developed to control the bandwidth, allow shifting in the time and frequency domains, and perform mode-selective beam-splitter-like transformations. However, there is no present scheme to perform targeted multimode unitary transformations on temporal modes. Here we present a practical approach to realize general transformations for temporal modes. We show theoretically that any unitary transformation on temporal modes can be performed using a series of phase operations in the time and frequency domains. Numerical simulations show that several key transformations on temporal modes can be performed with greater than 95% fidelity using experimentally feasible specifications.