Chern Character for Global Matrix Factorizations

dc.contributor.advisorPolishchuk, Alexanderen_US
dc.contributor.authorPlatt, Daviden_US
dc.date.accessioned2013-10-03T23:32:01Z
dc.date.available2013-10-03T23:32:01Z
dc.date.issued2013-10-03
dc.description.abstractWe give a formula for the Chern character on the DG category of global matrix factorizations on a smooth scheme $X$ with superpotential $w\in \Gamma(\O_X)$. Our formula takes values in a Cech model for Hochschild homology. Our methods may also be adapted to get an explicit formula for the Chern character for perfect complexes of sheaves on $X$ taking values in right derived global sections of the De-Rham algebra. Along the way we prove that the DG version of the Chern Character coincides with the classical one for perfect complexes.en_US
dc.identifier.urihttps://hdl.handle.net/1794/13244
dc.language.isoen_USen_US
dc.publisherUniversity of Oregonen_US
dc.rightsAll Rights Reserved.en_US
dc.subjectChern Characteren_US
dc.subjectMatrix Factorizationsen_US
dc.subjectNoncommutative Geometryen_US
dc.titleChern Character for Global Matrix Factorizationsen_US
dc.typeElectronic Thesis or Dissertationen_US
thesis.degree.disciplineDepartment of Mathematicsen_US
thesis.degree.grantorUniversity of Oregonen_US
thesis.degree.leveldoctoralen_US
thesis.degree.namePh.D.en_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Platt_oregon_0171A_10669.pdf
Size:
602.42 KB
Format:
Adobe Portable Document Format