An Odd Analog of Plamenevskaya's Invariant of Transverse Knots

dc.contributor.advisorLipshitz, Robert
dc.contributor.authorMontes de Oca, Gabriel
dc.date.accessioned2020-12-08T15:45:33Z
dc.date.available2020-12-08T15:45:33Z
dc.date.issued2020-12-08
dc.description.abstractPlamenevskaya defined an invariant of transverse links as a distinguished class in the even Khovanov homology of a link. We define an analog of Plamenevskaya’s invariant in the odd Khovanov homology of Ozsváth, Rasmussen, and Szabó. We show that the analog is also an invariant of transverse links and has similar properties to Plamenevskaya’s invariant. We also show that the analog invariant can be identified with an equivalent invariant in the reduced odd Khovanov homology. We demonstrate computations of the invariant on various transverse knot pairs with the same topological knot type and self-linking number.en_US
dc.identifier.urihttps://hdl.handle.net/1794/25886
dc.language.isoen_US
dc.publisherUniversity of Oregon
dc.rightsAll Rights Reserved.
dc.subjectcontact topologyen_US
dc.subjectKhovanov homologyen_US
dc.subjectlow-dimensional topologyen_US
dc.subjectPlamenevskayaen_US
dc.subjecttransverse knotsen_US
dc.titleAn Odd Analog of Plamenevskaya's Invariant of Transverse Knots
dc.typeElectronic Thesis or Dissertation
thesis.degree.disciplineDepartment of Mathematics
thesis.degree.grantorUniversity of Oregon
thesis.degree.leveldoctoral
thesis.degree.namePh.D.

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MontesdeOca_oregon_0171A_12847.pdf
Size:
434.77 KB
Format:
Adobe Portable Document Format