Motivic Integral of K3 Surfaces over a Non-Archimedean Field

dc.contributor.advisorVologodksy, Vadimen_US
dc.contributor.authorStewart, Allenen_US
dc.date.accessioned2014-09-29T17:52:14Z
dc.date.available2014-09-29T17:52:14Z
dc.date.issued2014-09-29
dc.description.abstractWe prove a formula expressing the motivic integral of a K3 surface over C((t)) with semi-stable reduction in terms of the associated limit mixed Hodge structure. Secondly, for every smooth variety over a complete discrete valuation field we define an analogue of the monodromy pairing, constructed by Grothendieck in the case of Abelian varieties, and prove that our monodromy pairing is a birational invariant of the variety. Finally, we propose a conjectural formula for the motivic integral of maximally degenerate K3 surfaces over an arbitrary complete discrete valuation field and prove this conjecture for Kummer K3 surfaces. This dissertation includes previously published co-authored material.en_US
dc.identifier.urihttps://hdl.handle.net/1794/18418
dc.language.isoen_USen_US
dc.publisherUniversity of Oregonen_US
dc.rightsAll Rights Reserved.en_US
dc.titleMotivic Integral of K3 Surfaces over a Non-Archimedean Fielden_US
dc.typeElectronic Thesis or Dissertationen_US
thesis.degree.disciplineDepartment of Mathematicsen_US
thesis.degree.grantorUniversity of Oregonen_US
thesis.degree.leveldoctoralen_US
thesis.degree.namePh.D.en_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Stewart_oregon_0171A_11037.pdf
Size:
476.08 KB
Format:
Adobe Portable Document Format