Best Practices in Using Semantic Transformation in Data Integration to Address Data Integrity Issues

dc.contributor.authorBalijepalli, Saketh
dc.date.accessioned2019-07-17T22:43:54Z
dc.date.available2019-07-17T22:43:54Z
dc.date.issued2019
dc.description.abstractData integration is a digital technology used to combine data from multiple sources and provide users with a unified view of data assets (Chen, Hu, & Xu, 2015; Davidovski, 2018). Data is typically loaded into a data warehouse via Execute-Transform-Load (ETL) operations (Hose et al. 2015); sometimes the transformed data lacks data integrity. This paper explores best practices in using semantic transformation to address data integrity issues caused by data integration.en_US
dc.identifier.urihttps://hdl.handle.net/1794/24786
dc.language.isoenen_US
dc.publisherUniversity of Oregonen_US
dc.relation.ispartofseriesAIM Capstone;Balijepalli2019
dc.rightsCreative Commons BY-NC-ND 4.0-USen_US
dc.subjectData integrationen_US
dc.subjectETLen_US
dc.subjectSyntactic transformationen_US
dc.subjectSemantic transformationen_US
dc.subjectBusiness intelligenceen_US
dc.subjectData analyticsen_US
dc.subjectSemantic ETLen_US
dc.subjectData warehouseen_US
dc.subjectSemantic informationen_US
dc.subjectData integrityen_US
dc.titleBest Practices in Using Semantic Transformation in Data Integration to Address Data Integrity Issuesen_US
dc.typeTerminal Projecten_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Balijepalli_2019.pdf
Size:
325.13 KB
Format:
Adobe Portable Document Format
Description:
57 pages
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
2.22 KB
Format:
Item-specific license agreed upon to submission
Description: