The Canonical Grothendieck Topology and a Homotopical Analog

dc.contributor.advisorDugger, Daniel
dc.contributor.authorLester, Cynthia
dc.date.accessioned2019-09-18T19:28:49Z
dc.date.available2019-09-18T19:28:49Z
dc.date.issued2019-09-18
dc.description.abstractWe explore the canonical Grothendieck topology and a new homotopical analog. First we discuss a specific description of the covers in the canonical topology, which we then use to get a corollary of Giraud's Theorem. Second we delve into the canonical topology on some specific categories, e.g. on the category of topological spaces and the category of abelian groups; this part includes concrete examples and non-examples. Lastly, we discuss a homotopical analog of the canonical Grothendieck topology and explore some examples of this analog.en_US
dc.identifier.urihttps://hdl.handle.net/1794/24924
dc.language.isoen_US
dc.publisherUniversity of Oregon
dc.rightsAll Rights Reserved.
dc.subjectcolim sieveen_US
dc.subjecteffective epimorphismen_US
dc.subjectgeneralized sieveen_US
dc.subjecthocolim sieveen_US
dc.subjecthomotopical canonical topologyen_US
dc.subjectindex-functor categoryen_US
dc.titleThe Canonical Grothendieck Topology and a Homotopical Analog
dc.typeElectronic Thesis or Dissertation
thesis.degree.disciplineDepartment of Mathematics
thesis.degree.grantorUniversity of Oregon
thesis.degree.leveldoctoral
thesis.degree.namePh.D.

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lester_oregon_0171A_12522.pdf
Size:
473.6 KB
Format:
Adobe Portable Document Format