Resilience of Partial k-tree Networks with Edge and Node Failures

dc.contributor.authorMata-Montero, Erick
dc.date.accessioned2023-06-20T20:33:18Z
dc.date.available2023-06-20T20:33:18Z
dc.date.issued1989-10-20
dc.description23 pagesen_US
dc.description.abstractThe resilience of a network is the expected number of pairs of nodes that can communicate. Computing the resilience of a network is a #P-complete problem even for planar networks with fail-safe nodes. We generalize an O(n)^2 time algorithm to compute the resilience of n-node k-tree networks with fail-safe nodes to obtain an O(n) time algorithm that computes the resilience of n-node partial k-tree networks with edge and node failures (given a fixed k and an embedding of the partial k-tree in a k-tree).en_US
dc.identifier.urihttps://hdl.handle.net/1794/28437
dc.language.isoenen_US
dc.publisherUniversity of Oregonen_US
dc.rightsCreative Commons BY-NC-ND 4.0-USen_US
dc.subjectplanar networksen_US
dc.subjectfail-safe nodesen_US
dc.subjectnetwork resilienceen_US
dc.titleResilience of Partial k-tree Networks with Edge and Node Failuresen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mata-montero_1989_01.pdf
Size:
7.37 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
2.22 KB
Format:
Item-specific license agreed upon to submission
Description: