GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O

dc.contributor.advisorProudfoot, Nicholas
dc.contributor.authorHilburn, Justin
dc.date.accessioned2016-10-27T18:38:29Z
dc.date.available2016-10-27T18:38:29Z
dc.date.issued2016-10-27
dc.description.abstractIn this thesis I show that indecomposable projective and tilting modules in hypertoric category O are obtained by applying a variant of the geometric Jacquet functor of Emerton, Nadler, and Vilonen to certain Gel'fand-Kapranov-Zelevinsky hypergeometric systems. This proves the abelian case of a conjecture of Bullimore, Gaiotto, Dimofte, and Hilburn on the behavior of generic Dirichlet boundary conditions in 3d N=4 SUSY gauge theories.en_US
dc.identifier.urihttps://hdl.handle.net/1794/20456
dc.language.isoen_US
dc.publisherUniversity of Oregon
dc.rightsAll Rights Reserved.
dc.subject3d N=4en_US
dc.subjectBoundary conditionen_US
dc.subjectCategory Oen_US
dc.subjectHypertoricen_US
dc.subjectSymplectic dualityen_US
dc.subjectSymplectic resolutionen_US
dc.titleGKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O
dc.typeElectronic Thesis or Dissertation
thesis.degree.disciplineDepartment of Mathematics
thesis.degree.grantorUniversity of Oregon
thesis.degree.leveldoctoral
thesis.degree.namePh.D.

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hilburn_oregon_0171A_11538.pdf
Size:
340.26 KB
Format:
Adobe Portable Document Format