Resilience of Partial k-tree Networks

dc.contributor.authorMata-Montero, Erick
dc.date.accessioned2023-06-20T20:36:07Z
dc.date.available2023-06-20T20:36:07Z
dc.date.issued1989-10-20
dc.description28 pagesen_US
dc.description.abstractThe resilience of a network is the expected number of pairs of nodes that can communicate. Computing the resilience of a network has been shown to be a #P-complete problem for planar networks and to take O(n)^2 time for n-node partial 2-tree networks. We present an O(n) time algorithm to compute the resilience of partial 2-tree networks on n-nodes, and, for a fixed k, an O(n)^2 algorithm to compute the resilience of n-node partial k-tree networks given with an embedding in a k-tree.en_US
dc.identifier.urihttps://hdl.handle.net/1794/28438
dc.language.isoenen_US
dc.publisherUniversity of Oregonen_US
dc.rightsCreative Commons BY-NC-ND 4.0-USen_US
dc.subjectpartial 2-tree networksen_US
dc.subjectplanar networksen_US
dc.subjectnetwork resilienceen_US
dc.titleResilience of Partial k-tree Networksen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mata-montero_1989.pdf
Size:
8.63 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
2.22 KB
Format:
Item-specific license agreed upon to submission
Description: