Multiplier Theorems on Anisotropic Hardy Spaces

dc.contributor.advisorBownik, Marcinen_US
dc.contributor.authorWang, Li-Anen_US
dc.creatorWang, Li-Anen_US
dc.date.accessioned2012-10-26T04:04:21Z
dc.date.available2012-10-26T04:04:21Z
dc.date.issued2012
dc.description.abstractWe extend the theory of singular integral operators and multiplier theorems to the setting of anisotropic Hardy spaces. We first develop the theory of singular integral operators of convolution type in the anisotropic setting and provide a molecular decomposition on Hardy spaces that will help facilitate the study of these operators. We extend two multiplier theorems, the first by Taibleson and Weiss and the second by Baernstein and Sawyer, to the anisotropic setting. Lastly, we characterize the Fourier transforms of Hardy spaces and show that all multipliers are necessarily continuous.en_US
dc.identifier.urihttps://hdl.handle.net/1794/12429
dc.language.isoen_USen_US
dc.publisherUniversity of Oregonen_US
dc.rightsAll Rights Reserved.en_US
dc.subjectFourier analysisen_US
dc.subjectHardy spacesen_US
dc.subjectHarmonic analysisen_US
dc.titleMultiplier Theorems on Anisotropic Hardy Spacesen_US
dc.typeElectronic Thesis or Dissertationen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wang_oregon_0171A_10420.pdf
Size:
545.71 KB
Format:
Adobe Portable Document Format