Primitive and Poisson spectra of non-semisimple twists of polynomial algebras
dc.contributor.author | Brandl, Mary-Katherine, 1963- | en_US |
dc.date.accessioned | 2008-02-10T04:19:31Z | |
dc.date.available | 2008-02-10T04:19:31Z | |
dc.date.issued | 2001 | en_US |
dc.description | Adviser: Brad Shelton. viii, 49 leaves | en_US |
dc.description | A print copy of this title is available through the UO Libraries under the call number: MATH LIB. QA251.3 .B716 2001 | en_US |
dc.description.abstract | We examine a family of twists of the complex polynomial ring on n generators by a non-semisimple automorphism. In particular, we consider the case where the automorphism is represented by a single Jordan block. The multiplication in the twist determines a Poisson structure on affine n-space. We demonstrate that the primitive ideals in the twist are parameterized by the symplectic leaves associated to this Poisson structure. Moreover, the symplectic leaves are determined by the orbits of a regular unipotent subgroup of the complex general linear group. | en_US |
dc.format.extent | 1894196 bytes | |
dc.format.extent | 1473 bytes | |
dc.format.extent | 51748 bytes | |
dc.format.extent | 53191 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.format.mimetype | text/plain | |
dc.format.mimetype | text/plain | |
dc.identifier.isbn | 0-493-36423-4 | en_US |
dc.identifier.uri | https://hdl.handle.net/1794/147 | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | University of Oregon | en_US |
dc.relation.ispartofseries | University of Oregon theses, Dept. of Mathematics, Ph. D., 2001 | en_US |
dc.subject | Polynomial rings | en_US |
dc.subject | Poisson algebras | en_US |
dc.subject | Noncommutative rings | en_US |
dc.title | Primitive and Poisson spectra of non-semisimple twists of polynomial algebras | en_US |
dc.type | Thesis | en_US |