Families of Differential Operators Acting on Overconvergent Hilbert Modular Forms

dc.contributor.advisorEischen, Ellen
dc.contributor.authorAycock, Jon
dc.date.accessioned2022-10-26T15:25:05Z
dc.date.available2022-10-26T15:25:05Z
dc.date.issued2022-10-26
dc.description.abstractWe construct differential operators acting on overconvergent Hilbert modular forms. This extends work of Katz in the case of p-adic Hilbert modular forms, and of Harron--Xiao and Liu for overconvergent Siegel modular forms. The result has applications to the construction of p-adic L-functions in the presence of a Damerell-type formula.en_US
dc.identifier.urihttps://hdl.handle.net/1794/27741
dc.language.isoen_US
dc.publisherUniversity of Oregon
dc.rightsAll Rights Reserved.
dc.subjectDamerellen_US
dc.subjectMaass--Shimura Operatoren_US
dc.subjectOverconvergent Hilbert Modular Formsen_US
dc.subjectp-adicen_US
dc.titleFamilies of Differential Operators Acting on Overconvergent Hilbert Modular Forms
dc.typeElectronic Thesis or Dissertation
thesis.degree.disciplineDepartment of Mathematics
thesis.degree.grantorUniversity of Oregon
thesis.degree.leveldoctoral
thesis.degree.namePh.D.

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Aycock_oregon_0171A_13410.pdf
Size:
1.35 MB
Format:
Adobe Portable Document Format