Algebraic Weak Factorization Systems in Double Categories

dc.contributor.advisorDugger, Danielen_US
dc.contributor.authorSchultz, Patricken_US
dc.date.accessioned2014-09-29T17:53:19Z
dc.date.issued2014-09-29
dc.description.abstractWe present a generalized framework for the theory of algebraic weak factorization systems, building on work by Richard Garner and Emily Riehl. We define cyclic 2-fold double categories, and bimonads (or bialgebras) and lax/colax bimonad morphisms inside cyclic 2-fold double categories. After constructing a cyclic 2-fold double category <bold>FF</bold>(D) of functorial factorization systems in any sufficiently nice 2-category D, we show that bimonads and lax/colax bimonad morphsims in <bold>FF</bold>(Cat) agree with previous definitions of algebraic weak factorization systems and lax/colax morphisms. We provide a proof of one of the core technical theorems from previous work on algebraic weak factorization systems in our generalized framework. Finally, we show that this framework can be further generalized to cyclic 2-fold double multicategories, incorporating Quillen functors of several variables.en_US
dc.description.embargo2016-09-29
dc.identifier.urihttps://hdl.handle.net/1794/18429
dc.language.isoen_USen_US
dc.publisherUniversity of Oregonen_US
dc.rightsAll Rights Reserved.en_US
dc.subjectCategory Theoryen_US
dc.subjectDouble Categoriesen_US
dc.subjectModel Categoriesen_US
dc.titleAlgebraic Weak Factorization Systems in Double Categoriesen_US
dc.typeElectronic Thesis or Dissertationen_US
thesis.degree.disciplineDepartment of Mathematicsen_US
thesis.degree.grantorUniversity of Oregonen_US
thesis.degree.leveldoctoralen_US
thesis.degree.namePh.D.en_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Schultz_oregon_0171A_11048.pdf
Size:
512.18 KB
Format:
Adobe Portable Document Format