Semisimplicity of Certain Representation Categories

dc.contributor.advisorBerenstein, Arkadyen_US
dc.contributor.authorFoster, Johnen_US
dc.date.accessioned2013-10-03T23:33:29Z
dc.date.available2013-10-03T23:33:29Z
dc.date.issued2013-10-03
dc.description.abstractWe exhibit a correspondence between subcategories of modules over an algebra and sub-bimodules of the dual of that algebra. We then prove that the semisimplicity of certain such categories is equivalent to the existence of a Peter-Weyl decomposition of the corresponding sub-bimodule. Finally, we use this technique to establish the semisimplicity of certain finite-dimensional representations of the quantum double $D(U_q(sl_2))$ for generic $q$.en_US
dc.identifier.urihttps://hdl.handle.net/1794/13269
dc.language.isoen_USen_US
dc.publisherUniversity of Oregonen_US
dc.rightsAll Rights Reserved.en_US
dc.titleSemisimplicity of Certain Representation Categoriesen_US
dc.typeElectronic Thesis or Dissertationen_US
thesis.degree.disciplineDepartment of Mathematicsen_US
thesis.degree.grantorUniversity of Oregonen_US
thesis.degree.leveldoctoralen_US
thesis.degree.namePh.D.en_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Foster_oregon_0171A_10698.pdf
Size:
322.8 KB
Format:
Adobe Portable Document Format