Topics in Random Walks

dc.contributor.advisorLevin, Daviden_US
dc.contributor.authorMontgomery, Aaronen_US
dc.date.accessioned2013-10-03T23:37:50Z
dc.date.available2013-10-03T23:37:50Z
dc.date.issued2013-10-03
dc.description.abstractWe study a family of random walks defined on certain Euclidean lattices that are related to incidence matrices of balanced incomplete block designs. We estimate the return probability of these random walks and use it to determine the asymptotics of the number of balanced incomplete block design matrices. We also consider the problem of collisions of independent simple random walks on graphs. We prove some new results in the collision problem, improve some existing ones, and provide counterexamples to illustrate the complexity of the problem.en_US
dc.identifier.urihttps://hdl.handle.net/1794/13335
dc.language.isoen_USen_US
dc.publisherUniversity of Oregonen_US
dc.rightsAll Rights Reserved.en_US
dc.subjectbalanced incomplete block designsen_US
dc.subjectcollisions of random walksen_US
dc.subjectMarkov chainsen_US
dc.titleTopics in Random Walksen_US
dc.typeElectronic Thesis or Dissertationen_US
thesis.degree.disciplineDepartment of Mathematicsen_US
thesis.degree.grantorUniversity of Oregonen_US
thesis.degree.leveldoctoralen_US
thesis.degree.namePh.D.en_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montgomery_oregon_0171A_10776.pdf
Size:
571.56 KB
Format:
Adobe Portable Document Format