Some Extension Algebras of Standard Modules over Khovanov-Lauda-Rouquier Algebras of Type A, Including A-Infinity Structure

dc.contributor.advisorKleshchev, Alexander
dc.contributor.authorBuursma, Doeke
dc.date.accessioned2020-09-24T17:21:38Z
dc.date.available2020-09-24T17:21:38Z
dc.date.issued2020-09-24
dc.description.abstractWe give an explicit description of the category of Yoneda extensions of standard modules over KLR algebras for two special cases in Lie type A. In these two special cases, the A-infinity category structure of the Yoneda category is formal. We give an example to show that, in general, the A-infinity category structure of the Yoneda category is non-formal.en_US
dc.identifier.urihttps://hdl.handle.net/1794/25676
dc.language.isoen_US
dc.publisherUniversity of Oregon
dc.rightsAll Rights Reserved.
dc.subjectA-infinity Algebrasen_US
dc.subjectCategorificationen_US
dc.subjectHomological Algebraen_US
dc.subjectKhovanov-Lauda-Rouquier Algebrasen_US
dc.subjectRepresentation Theoryen_US
dc.titleSome Extension Algebras of Standard Modules over Khovanov-Lauda-Rouquier Algebras of Type A, Including A-Infinity Structure
dc.typeElectronic Thesis or Dissertation
thesis.degree.disciplineDepartment of Mathematics
thesis.degree.grantorUniversity of Oregon
thesis.degree.leveldoctoral
thesis.degree.namePh.D.

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Buursma_oregon_0171A_12813.pdf
Size:
684.13 KB
Format:
Adobe Portable Document Format