• Research Support
      • Starting Library Research
      • Research Guides
      • Subject Librarians
      • Digital Scholarship Center
      • Publishing & Copyright
      • Research Data Management
      • Study Skills & Campus Resources
      • Request a Purchase
    • Using the Libraries
      • Rooms & Study Spaces
      • Borrowing & Requesting
      • Connect from Off-campus
      • ILL (Interlibrary Loan)
      • Course Reserves
      • Technology, Printing, & Scanning
      • Tutoring at the UO Libraries
      • Classroom Technology Support
      • Canvas Support
      • Accessibility
    • Collections
      • Databases A-Z
      • Scholars' Bank
      • Videos, Music, Photos
      • Special Collections & University Archives
      • Unique Collections
      • Government Documents
      • Maps & Aerial Photography
      • Oregon Digital
      • Oregon Newspapers
    • Library Accounts
      • LibrarySearch Account
      • ILLiad Account (Interlibrary Loan)
      • Endnote Web (Citation Manager)
    • About
      • Hours & Locations
      • Staff & Department Directory
      • News & Events
      • Calendar
      • Mission, Values, & Strategic Directions
      • Diversity & Inclusion
      • Policies
      • Jobs
      • Comments & Suggestions
    • Chat/Ask Us
      • Email
      • Phone
      • Text
    View Item 
    •   Scholars' Bank Home
    • University Archives
    • University of Oregon Administration
    • The Office of Research, Innovation and Graduate Education
    • Theses and Dissertations
    • View Item
    •   Scholars' Bank Home
    • University Archives
    • University of Oregon Administration
    • The Office of Research, Innovation and Graduate Education
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The electronic structure within the mobility gap of transparent amorphous oxide semiconductors

    View/Open
    Erslev_Peter_Tweedie_phd2010win.pdf (2.411Mb)

    Date
    2010-03
    Author
    Erslev, Peter Tweedie, 1979-
    Metadata
    Show full item record
    Author
    Erslev, Peter Tweedie, 1979-
    Abstract
    Transparent amorphous oxide semiconductors are a relatively new class of materials which show significant promise for electronic device applications. The electron mobility in these materials is at least ten times greater than that of the current dominant material for thin-film transistors: amorphous silicon. The density of states within the gap of a semiconductor largely determines the characteristics of a device fabricated from it. Thus, a fundamental understanding of the electronic structure within the mobility gap of amorphous oxides is crucial to fully developing technologies based around them. Amorphous zinc tin oxide (ZTO) and indium gallium zinc oxide (IGZO) were investigated in order to determine this sub-gap structure. Junction-capacitance based methods including admittance spectroscopy and drive level capacitance profiling (DLCP) were used to find the free carrier and deep defect densities. Defects located near insulator-semiconductor interfaces were commonly observed and strongly depended on fabrication conditions. Transient photocapacitance spectroscopy (TPC) indicated broad valence band-tails for both the ZTO and IGZO samples, characterized by Urbach energies of 110±20 meV. These large band-tail widths imply that significant structural disorder exists in the atomic lattice of these materials. While such broad band-tails generally correlate with poor electronic transport properties, the density of states near the conduction band is more important for devices such as transistors. The TPC spectra also revealed an optically active defect located at the insulator-semiconductor junction. Space-charge-limited current (SCLC) measurements were attempted in order to deduce the density of states near the conduction band. While the SCLC results were promising, their interpretation was too ambiguous to obtain a detailed picture of the electronic state distribution. Another technique, modulated photocurrent spectroscopy (MPC), was then employed for this purpose. Using this method narrow conduction band-tails were determined for the ZTO samples with Urbach energies near 10 meV. Thus, by combining the results of the DLCP, TPC and MPC measurements, a quite complete picture of the density of states within the mobility gap of these amorphous oxides has emerged. The relationship of this state distribution to transistor performance is discussed as well as to the future development of device applications of these materials.
    URI


    Collections
    • Physics Theses and Dissertations [111]
    • Theses and Dissertations [2826]

    My Account

    LoginRegister

    Browse

    All of Scholars' BankCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    Statistics

    View Usage Statistics

    CAMPUS

    • News
    • Events
    • Maps
    • Directions
    • Class Schedule
    • Academic Calendar

    RESOURCES

    • Webmail
    • Canvas
    • Duckweb
    • Find People
    • A–Z Index
    • UO Libraries

    RELATED INFORMATION

    • Library Accessibility
    • Privacy Policy
    • Giving
    UO Libraries
    1501 Kincaid Street
    1239 University of Oregon
    Eugene, OR 97403-1299

    T: 541-346-3053

    FacebookTwitterYouTubeInstagram

    CareersPrivacy PolicyAboutFind People
    University of Oregon
    ©University of Oregon. All Rights Reserved.

    UO prohibits discrimination on the basis of race, color, sex, national or ethnic origin, age, religion, marital status, disability, veteran status, sexual orientation, gender identity, and gender expression in all programs, activities and employment practices as required by Title IX, other applicable laws, and policies. Retaliation is prohibited by UO policy. Questions may be referred to the Title IX Coordinator, Office of Affirmative Action and Equal Opportunity, or to the Office for Civil Rights. Contact information, related policies, and complaint procedures are listed on the statement of non-discrimination.