Geometry and Combinatorics Pertaining to the Homology of Spaces of Knots
Loading...
Date
2012
Authors
Pelatt, Kristine
Journal Title
Journal ISSN
Volume Title
Publisher
University of Oregon
Abstract
We produce explicit geometric representatives of non-trivial homology classes in
Emb(S1,Rd), the space of knots, when d is even. We generalize results of Cattaneo,
Cotta-Ramusino and Longoni to define cycles which live off of the vanishing line of
a homology spectral sequence due to Sinha. We use con figuration space integrals to
show our classes pair non-trivially with cohomology classes due to Longoni.
We then give an alternate formula for the first differential in the homology
spectral sequence due to Sinha. This differential connects the geometry of the cycles
we define to the combinatorics of the spectral sequence. The new formula for the
differential also simplifies calculations in the spectral sequence.
Description
Keywords
embedding spaces, spaces of knots