The Geometry of quasi-Sasaki Manifolds

Loading...
Thumbnail Image

Date

2016-10-27

Authors

Welly, Adam

Journal Title

Journal ISSN

Volume Title

Publisher

University of Oregon

Abstract

Let (M,g) be a quasi-Sasaki manifold with Reeb vector field xi. Our goal is to understand the structure of M when g is an Einstein metric. Assuming that the S^1 action induced by xi is locally free or assuming a certain non-negativity condition on the transverse curvature, we prove some rigidity results on the structure of (M,g). Naturally associated to a quasi-Sasaki metric g is a transverse Kahler metric g^T. The transverse Kahler-Ricci flow of g^T is the normalized Ricci flow of the transverse metric. Exploiting the transverse Kahler geometry of (M,g), we can extend results in Kahler-Ricci flow to our transverse version. In particular, we show that a deep and beautiful theorem due to Perleman has its counterpart in the quasi-Sasaki setting. We also consider evolving a Sasaki metric g by Ricci flow. Unfortunately, if g(0) is Sasaki then g(t) is not Sasaki for t>0. However, in some instances g(t) is quasi-Sasaki. We examine this and give some qualitative results and examples in the special case that the initial metric is eta-Einstein.

Description

Keywords

Differential geometry, Einstein metric, Kahler, Quasi-Sasaki, Ricci flow, Sasaki

Citation