Higher Congruences Between Modular Forms
Loading...
Date
2018-09-06
Authors
Hsu, Catherine
Journal Title
Journal ISSN
Volume Title
Publisher
University of Oregon
Abstract
In his seminal work on modular curves and the Eisenstein ideal, Mazur studied the existence of congruences between certain Eisenstein series and newforms, proving that Eisenstein ideals associated to weight 2 cusp forms of prime level are locally principal. In this dissertation, we re-examine Eisenstein congruences, incorporating a notion of “depth of congruence,” in order to understand the local structure of Eisenstein ideals associated to weight 2 cusp forms of squarefree level N. Specifically, we use a commutative algebra result of Berger, Klosin, and Kramer to bound the depth of mod p Eisenstein congruences (from below) by the p-adic valuation of φ(N). We then show how this depth of congruence controls the local principality of the associated Eisenstein ideal.
Description
Keywords
Algebraic number theory, Congruences, Modular forms