Equivariant Khovanov Homotopy Type and Periodic Links
Loading...
Date
Authors
Musyt, Jeffrey
Journal Title
Journal ISSN
Volume Title
Publisher
University of Oregon
Abstract
In this thesis, we give two equivalent definitions for a group $G$ acting on a strictly-unitary-lax-2-functor $D:\CC\rightarrow\mathscr{B}$ from the cube category to the Burnside category. We then show that the natural $\mathbb{Z}/p\mathbb{Z}$ action on a $p$-periodic link $L$ induces such an action on Lipshitz and Sarkar's Khovanov functor $F_{Kh}(L): \CC \rightarrow \mathscr{B}$ which makes the Khovanov homotopy type $\mathcal{X}(L)$ into an equivariant knot invariant. That is, if a link $L'$ is equivariantly isotopic to $L$, then $\mathcal{X}(L')$ is Borel homotopy equivalent to $\mathcal{X}(L)$.
Description
Keywords
Khovanov Homology, Knot Theory, Low-Dimensional Topology