Composition and Cobordism Maps
Loading...
Date
Authors
Cohen, Jesse
Journal Title
Journal ISSN
Volume Title
Publisher
University of Oregon
Abstract
We study the relationship between the algebra of module homomorphisms under composition and 4-dimensional cobordisms in the context of bordered Heegaard Floer homology. In particular, we prove that composition of module homomorphisms of type-$D$ structures induces the pair of pants cobordism map on Heegaard Floer homology in the morphism spaces formulation of the latter, due to Lipshitz--Ozsv\'{a}th--Thurston. Along the way, we prove a gluing result for cornered 4-manifolds constructed from bordered Heegaard triples.
As applications, we present a new algorithm for computing arbitrary cobordism maps on Heegaard Floer homology and construct new nontrivial $A_\infty$-deformations of Khovanov's arc algebras. Motivated by this last result and a K\"{u}nneth theorem for Heegaard Floer complexes of connected sums, we also prove the existence of a tensor product decomposition for arc algebras in characteristic 2 and show that there cannot be such a splitting over $\Z$.
Description
Keywords
3-manifold invariants, cobordism, deformation theory, Floer homology, Khovanov homology, topology