Hermitian Jacobi Forms of Higher Degree
Loading...
Date
Authors
Haight, Sean
Journal Title
Journal ISSN
Volume Title
Publisher
University of Oregon
Abstract
We develop the theory of Hermitian Jacobi forms in degree $n > 1$. This builds on the work of Klaus Haverkamp in \cite{HThesis} who developed this theory in degree $n = 1$. Haverkamp in turn generalized a monograph of Eichler and Zagier, \cite{E&Z}. Hermitian Jacobi forms are holomorphic functions which appear in certain infinite series expansions (Fourier Jacobi expansions) of Hermitian modular forms. In this work we give a definition of Hermitian Jacobi forms in degree $n > 1$, give their relationship to more classical Hermitian modular forms and construct a useful tool for studying Hermitian Jacobi forms, the theta expansion. This theta expansion allows us to relate our forms to classical modular forms via the Eichler-Zagier map and thereby bound the dimension of our space of forms. We then go on to apply the developed theory to prove some non-vanishing results on the Fourier coefficients of Hermitian modular forms.
Description
Keywords
Automorphic Forms, Hermitian Jacobi Forms, Jacobi Forms