Hermitian Jacobi Forms of Higher Degree

Loading...
Thumbnail Image

Authors

Haight, Sean

Journal Title

Journal ISSN

Volume Title

Publisher

University of Oregon

Abstract

We develop the theory of Hermitian Jacobi forms in degree $n > 1$. This builds on the work of Klaus Haverkamp in \cite{HThesis} who developed this theory in degree $n = 1$. Haverkamp in turn generalized a monograph of Eichler and Zagier, \cite{E&Z}. Hermitian Jacobi forms are holomorphic functions which appear in certain infinite series expansions (Fourier Jacobi expansions) of Hermitian modular forms. In this work we give a definition of Hermitian Jacobi forms in degree $n > 1$, give their relationship to more classical Hermitian modular forms and construct a useful tool for studying Hermitian Jacobi forms, the theta expansion. This theta expansion allows us to relate our forms to classical modular forms via the Eichler-Zagier map and thereby bound the dimension of our space of forms. We then go on to apply the developed theory to prove some non-vanishing results on the Fourier coefficients of Hermitian modular forms.

Description

Keywords

Automorphic Forms, Hermitian Jacobi Forms, Jacobi Forms

Citation

Endorsement

Review

Supplemented By

Referenced By