Chemistry and Biochemistry Faculty Works
Permanent URI for this collection
Browse
Browsing Chemistry and Biochemistry Faculty Works by Author "Baldwin, Michael A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Prion protein (PrP) synthetic peptides induce cellular PrP to acquire properties of the scrapie isoform(Proceedings of the National Academy of Sciences, 1995-11) Kaneko, K.; Peretz, David; Pan, K. K.; Blochberger, Thomas C.; Wille, H.; Gabizon, R.; Griffith, O. H.; Cohen, F. E.; Baldwin, Michael A.; Prusiner, Stanley B.Conversion of the cellular isoform of prion protein (PrPc) into the scrapie isoform (PrPSc) involves an increase in the /3-sheet content, diminished solubility, and resistance to proteolytic digestion. Transgenetic studies argue that PrPc and PrPSc form a complex during PrPScformation; thus, synthetic PrP peptides, which mimic the conformational pluralism of PrP, were mixed with PrPc to determine whether its properties were altered. Peptides encompassing two a-helical domains of PrP when mixed with PrPc produced a complex that displayed many properties of PrPSc. The PrPcpeptide complex formed fibrous aggregates and up to 65% of complexed PrPc sedimented at 100,000 x g for 1 h, whereas PrPc alone did not. These complexes were resistant to pro teolytic digestion and displayed a high /3-sheet content. Un expectedly, the peptide in a /3-sheet conformation did not form the complex, whereas the random coil did. Addition of 2% Sarkosyl disrupted the complex and rendered PrPc sensitive to protease digestion. While the pathogenic AllTV mutation increased the efficacy of complex formation, anti-PrP mono clonal antibody prevented interaction between PrPc and pep tides. Our findings in concert with transgenetic investigations argue that PrPc interacts with PrPSc through a domain that contains the first two putative a-helices. Whether PrPc-peptide complexes possess prion infectivity as determined by bioassays remains to be established.Item Open Access Prion protein expression in Chinese hamster ovary cells using a glutamine synthetase selection and amplification system(Protein Engineering, 1997) Blochberger, Thomas C.; Cooper, Carl; Peretz, David; Tatzelt, Jorg; Griffith, O. H.; Baldwin, Michael A.; Prusiner, Stanley B.