Diagrammatic Representation Theory of the Rank Two Symplectic Group
Loading...
Date
Authors
Bodish, Elijah
Journal Title
Journal ISSN
Volume Title
Publisher
University of Oregon
Abstract
We study the diagrammatic representation theory of the group $Sp_4$ and the quantum group $U_q(\mathfrak{sp}_4)$, expanding on the previous results of Kuperberg about type $B_2= C_2$ webs. In particular, we construct a basis for an integral form of Kuperberg's web category. Using this basis we prove that the Karoubi envelope of the $C_2$ web category is equivalent to the category of tilting modules $\Tilt(U_q(\mathfrak{sp}_4))$. We also use the basis to give recursive formulas for the idempotent projecting to a top summand in a tensor product of fundamental representations. Finally, using our result about the equivalence between Kuperberg's web category and $\Tilt(U_q(\mathfrak{sp}_4))$, we prove that when $[3]=0$ or $[4] = 0$, the semisimple quotient of $U_q(\mathfrak{sp}_4)$ is equivalent to $\Rep(O(2))$.
This dissertation contains previously published material.
Description
Keywords
clasp, Jones-Wenzl idempotent, representation theory, spider, tilting modules, webs