The Tweedie Index Parameter and Its Estimator: An Introduction with Applications to Actuarial Ratemaking

dc.contributor.advisor
dc.contributor.advisor
dc.contributor.advisor
dc.contributor.authorTemple, Seth David
dc.date.accessioned2023-10-25T19:06:52Z
dc.date.available2023-10-25T19:06:52Z
dc.date.issued2018-06
dc.description87 pagesen_US
dc.description.abstractTweedie random variables are exponential dispersion models that have power unit variance functions, are infnitely divisible, and are closed under translations and scale transformations. Notably, a Tweedie random variable has an indexing/power param- eter that is key in describing its distribution. Actuaries typically set this parameter to a default value, whereas R's tweedie package provides tools to estimate the Tweedie power via maximum likelihood estimation. This estimation is tested on simulations and applied to an auto severity dataset and a home loss cost dataset. Models built with an estimated Tweedie power observe lower Akaike Information Criterion rela- tive to models built with default Tweedie powers. However, this parameter tuning only marginally changes regression coefficients and model predictions. Given time constraints, we recommend actuaries use default Tweedie powers and consider alter- native feature engineering.en_US
dc.identifier.urihttps://hdl.handle.net/1794/29040
dc.language.isoen_USen_US
dc.publisherUniversity of Oregonen_US
dc.rightsCreative Commons BY-NC-ND 4.0-USen_US
dc.titleThe Tweedie Index Parameter and Its Estimator: An Introduction with Applications to Actuarial Ratemakingen_US
dc.typeThesis / Dissertationen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Temple_Thesis_2018.pdf
Size:
1.58 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
2.22 KB
Format:
Item-specific license agreed upon to submission
Description: