Physical Guidance of Cultured Retinal Neurons Using Zig-zag Surface Patterns
dc.contributor.author | Moslehi, Saba | |
dc.contributor.author | Watterson, William J. | |
dc.contributor.author | Rowland, Conor | |
dc.contributor.author | Smith, Julian H. | |
dc.contributor.author | Perez, Maria-Thereza | |
dc.contributor.author | Taylor, Richard P. | |
dc.date.accessioned | 2022-10-18T00:00:02Z | |
dc.date.available | 2022-10-18T00:00:02Z | |
dc.date.issued | 2020-12-18 | |
dc.description | 3 pages | en_US |
dc.description.abstract | The use of physical cues to control and guide various types of cells in vitro, especially neurons and their processes, has been the focus of a large amount of research. The response of neuronal processes to artificial surfaces depends on a number of factors including the cell type, the surface chemistry of the material, and the surface’s topological features [1,2]. In this Opinion piece, we investigate the extent to which retinal neuronal processes can be made to follow straight lines patterned into a surface. We show they can follow lines with relatively shallow heights of 2 μm and be made to undergo directional changes as great as 50°. However, some processes leave the lines and assume a weaving trajectory as they grow into the surface’s unpatterned regions. Based on these findings, we propose that neuronal processes will follow lines more closely if their shapes mimic the fractal weave patterns of unrestricted neurons. In addition to exploring the fundamental behavior of neurons interacting with artificial surfaces, the results inform the design of bio-inspired electrodes for human implants. | en_US |
dc.description.sponsorship | RPT is a Cottrell Scholar of the Research Council for Science Advancement. This research is supported by the WM Keck Foundation (RPT) and The Swedish Research Council (M.-T.P.: 2016-03757), Crown Princess Margareta’s Committee for the Blind, Stiftelse för Synskadade i fd Malmöhus Län and the Crafoordska Stiftelsen. | en_US |
dc.identifier.citation | Saba M, William J W, Conor R, Julian H. S, Maria-Thereza P, Richard P T. Physical Guidance of Cultured Retinal Neurons Using Zig-zag Surface Patterns. Am J Biomed Sci & Res. 2020 - 11(3). AJBSR.MS.ID.001629. DOI: 10.34297/AJBSR.2020.11.001629. | en_US |
dc.identifier.uri | doi.org/10.34297/AJBSR.2020.11.001629 | |
dc.identifier.uri | https://hdl.handle.net/1794/27709 | |
dc.language.iso | en | en_US |
dc.publisher | American Journal of Biomedical Science & Research | en_US |
dc.rights | Creative Commons BY-NC-ND 4.0-US | en_US |
dc.subject | Fractal | en_US |
dc.subject | In Vitro | en_US |
dc.subject | Physical Cues | en_US |
dc.subject | Retinal Neurons | en_US |
dc.subject | Su8 | en_US |
dc.title | Physical Guidance of Cultured Retinal Neurons Using Zig-zag Surface Patterns | en_US |
dc.type | Article | en_US |